December 15th, 2022
The increasingly pervasive use of big data and machine learning is raising various ethical issues, in particular privacy and fairness.
In this talk, I will discuss some frameworks to understand and mitigate the issues, focusing on iterative methods coming from information theory and statistics.
In the area of privacy protection, differential privacy (DP) and its variants are the most successful approaches to date. One of the fundamental issues of DP is how to reconcile the loss of information that it implies with the need to preserve the utility of the data. In this regard, a useful tool to recover utility is the Iterative Bayesian Update (IBU), an instance of the famous Expectation-Maximization method from Statistics. I will show that the IBU, combined with the metric version of DP, outperforms the state-of-the art, which is based on algebraic methods combined with the Randomized Response mechanism, widely adopted by the Big Tech industry (Google, Apple, Amazon, …). Furthermore I will discuss a surprising duality between the IBU and one of the methods used to enhance metric DP, that is the Blahut-Arimoto algorithm from Rate-Distortion Theory. Finally, I will discuss the issue of biased decisions in machine learning, and will show that the IBU can be applied also in this domain to ensure a fairer treatment of disadvantaged groups.
Bio:
Catuscia Palamidessi is Director of Research at INRIA Saclay (since 2002), where she leads the team COMETE. She has been Full Professor at the University of Genova, Italy (1994-1997) and Penn State University, USA (1998-2002). Palamidessi’s research interests include Privacy, Machine Learning, Fairness, Secure Information Flow, Formal Methods, and Concurrency. In 2019 she has obtained an ERC advanced grant to conduct research on Privacy and Machine Learning. She has been PC chair of various conferences including LICS and ICALP, and PC member of more than 120 international conferences. She is in the Editorial board of several journals, including the IEEE Transactions in Dependable and Secure Computing, Mathematical Structures in Computer Science, Theoretics, the Journal of Logical and Algebraic Methods in Programming and Acta Informatica. She is serving in the Executive Committee of ACM SIGLOG, CONCUR, and CSL.