
i

NANYANG

TECHNOLOGICAL
UNIVERSITY

REPORT
ON

INDUSTRIAL ATTACHMENT
WITH

INSTITUT NATIONAL DE RECHERCHE
EN INFORMATIQUE ET EN AUTOMATIQUE

(INRIA RHONE-ALPES, FRANCE)

8 JAN 2001 – 24 JUN 2001

PREPARED BY : TAN POK KIAM

 980695B03
 EEE 3

ii

ABSTRACT

This report presents the project done during the Industrial Attachment with the

French national research laboratory, Institut National de Recherche en Informatique

et en Automatique, Rhone-Alpes, France (INRIA Rhone-Alpes). The project looks

into implementing a real-time serial interface between 2 hardware, namely the

Motorola MPC555 microcontroller and the SICK LMS (Laser Measurement System),

on the Cycab. This is to enable the Cycab to have a real-time laser sensor guiding

system. Work was done on programming the MPC555 to communicate with the SICK

LMS. Numerous tests were also done to look into the response of the LMS when

different sets of telegrams were sent. Once the real-time serial interface was

implemented, work was concentrated on writing application programs for the SICK

LMS and MPC555. Application programs like Car Following and Obstacle Avoidance

are currently in the process of implementation.

This report is divided into 5 Chapters. An introduction of the project with the

objectives, work and hardware involved will be given first. After that, the first Chapter

will present a more detailed introduction of the main hardware used in the project. In

the following Chapter, this report looks into the implementation work done on the

serial interface. Then, Chapter 3 will present the application programs being done

currently. Comments and discussions are given in Chapter 4. Finally, the report ends

with the Summary and Conclusion in Chapter 5.

iii

INTRODUCTION

Since the invention of automobiles, the automobile industry has grown tremendously.

Subsequently, the technology involved has also improved by leaps and bounds. The

introduction of gears to the once ‘single-gear’ vehicles and the increase of engine

horsepower are just some good examples of technology advancements made in the

automotive field. These leaps in the technology not only bring greater convenience to

the people, they have also generated other interests. These interests, especially in

speed and engine power, have been so great that the industry is now manufacturing

faster and more powerful cars. However, power is nothing without control. Lives are

lost everyday on the road due to automobile accidents. Even with the latest

technology and safety precautions, the legendary World Formula 1 Champion, Artyon

Senna died in a fatal crash when his racecar crashed into a concrete wall at 300

km/h. All these have prompted the automobile industry to look more into improving

the safety features of a car.

At INRIA Rhone-Alpes, researchers are currently working on an intelligent vehicle

named, the Cycab. It is compact, environmental-friendly and can operate

autonomously with minimal control from the user. Works on the Cycab involve

implementing numerous safe lane-guiding systems, speed control and others. All

these are aimed at improving the safety of road transport and also easing the

booming population of private cars in the cities.

This Industrial Attachment at INRIA Rhone-Alpes was made possible because of a

collaboration tie between NTU and INRIA. During the attachment period of about 6

months, a project with the objective of implementing a real-time serial interface

iv

between SICK LMS and MPC555 microcontroller was given. The reason was that a

new Cycab equipped with the new generation microcontroller, MPC555, is being built

and there was a need to interface the SICK LMS and the MPC555. Subsequently,

application programs like Car Following and Obstacle Avoiding are to be

implemented too.

The main hardware/materials given for this project were a MPC555 Control Board

from Robosoft (manufacturer of Cycab), a SICK LMS 291-S05, a SUN workstation

and a LINUX/Windows NT PC for programming and downloading of programs to

MPC555. Additional materials include RS232/RS422 cables and user manuals for

SICK LMS and MPC555.

During the initial 2 months of the attachment, the main work involved was to have a

good understanding of the MPC555, SICK LMS, reviewing of C programming theory

and setting up the test environment. Tests were also done on the 2 hardware with

programs written in C programming language. The following 2 months were

concentrated on programming the serial interface program with numerous tests,

troubleshooting and debugging. Finally, upon the completion of the real-time serial

interface implementation, application programs on Car Following and Obstacle

Avoidance were looked into and are currently in the process of testing and

implementation.

This report was written to be as concise and clear as possible to the reader. Please

note that hexadecimal numbers are often used in this report. Thus, numbers like

0xXX and XXH that appear in this report are all in hexadecimal format.

ACKNOWLEDGEMENT INRIA Rhone-Alpes

v

ACKNOWLEDGEMENT

During the entire period of this Industrial Attachment, a lot of help and cooperation

were rendered by the fellow researchers, supervisors and colleagues in my

department, Moyens Robotiques, INRIA Rhone-Alpes. Therefore, I would like to

express my sincere gratitude to all of them and especially :

My project supervisor, Mr Gerald BAILLE, Research Engineer, Moyens Robotiques,

INRIA Rhone-Alpes, for his precious guidance, time and help in my project and

report ;

Dr Hervé MATHIEU, Research Engineer, Chief of Moyens Robotiques, INRIA Rhone-

Alpes, for his time and help in my project.

I would also like to thank Mr Fabien LYDOIRE, Project BIP; Mr Kenneth SUNDARAJ,

Project SHARP; and Mr Cedric PRADALIE, Project SHARP for their aid in my work at

one time or another.

LIST OF TABLES INRIA Rhone-Alpes

vi

LIST OF TABLES

Table 1.1.1.1 : Specifications of Cycab 2

Table 1.2.3.1 : Possible Baud Rate for 40 MHz System Clock 12

Table 1.2.4.1 : Description of MPC555 Control Board 14

Table 1.3.3.1 : Specifications of SICK LMS 291-S05 18

Table 2.1.2.1 : Serial Frame Formats 24

Table 2.2.1.1 : MPC555 UART Interface Functions 25

Table 2.3.1.1 : LMS Telegram Structure 29

Table 2.3.1.2 : Description of LMS Telegram Structure 30

Table 2.3.3.1 : Description of LMS Status Byte 32

Table 2.3.4.1 : Command Telegram sent from MPC555 to LMS 33

Table 2.3.4.2 : Interpretation of Command Telegram 33

Table 2.3.4.3 : Response Telegram sent from LMS to MPC555 34

Table 2.3.4.4 : Interpretation of Response Telegram 34

Table 2.3.6.1 : Description of Makefile Functions of MPC555 36

vii

LIST OF FIGURES

Figure 1.1.1.1 : Layout of Cycab 3

Figure 1.1.2.1 : Network Connections in New Cycab 7

Figure 1.3.2.1 : Operating Principle of SICK LMS 16

Figure 1.3.2.2 : Scan Angle and Angular Resolution 17

Figure 1.3.6.1 : Maximum Configuration for a LMI System 21

Figure 2.1.1 : Configuration of Required Serial Interface 22

Figure 2.1.1.1 : Sub-D 9 Pin Connector View 23

Figure 2.3.6.1 : Example of Makefile Commands for MPC555 Program 37

Figure 2.4.1 : Overview of Simulated Environment 38

Figure 2.5.1.1 : Request for Change in Operating Mode with Response 39

Figure 2.5.1.2 : Request for Change in Operating Mode without Response 40

Figure 2.5.1.3 : Request for Scan Values (continuous) 40

Figure 2.5.2.1 : Initialisation Flow of Main Program 42

Figure 2.5.2.2 : Capturing of Scan Values in Main Program 43

Figure 3.1.1.1 : Possible Configurations of LMS Scanning Field 48

Figure 3.2.1.1 : Extraction and Processing of Data 50

Figure 3.2.3.1 : Mathematical Diagram Representation of Car Following 51

53

LIST OF PHOTOS

Photo 1.1.1.1 : Cycab (with S ICK LMS) at INRIA Rhone-Alpes 4

Photo 1.2.4.1 : MPC555 Control Board provided by Robosoft 13

Photo 1.3.1.1 : LMS 291-S05 15

Photo 2.2.2.1 : MPC555 Control Board with Connections (Top) 26

Photo 2.2.2.2 : MPC555 Control Board with Connections (Front) 27

Photo 2.2.2.3 : SICK LMS with Connections (Top) 28

54

CHAPTER I

INTRODUCTION TO HARDWARE

In this first chapter, a brief introduction on the main hardware (Cycab, MPC555 and

SICK LMS) used in the project will be given. This will enable the reader to have a

clear and basic understanding of the hardware before embarking on the next chapter

where the main program is explained in detail.

1.1 Cycab

1.1.1 System Description and Specifications

The Cycab is a small intelligent vehicle that runs on electricity. It had been designed

to transport up to two persons in downtown areas, pedestrian malls, large industrial

or amusement parks and airports, at a maximum speed of 30 km/h.

It offers two new functions, aided driving and autonomous driving. Aided

driving relies on the use of a joystick and a finger touch screen. This joystick is

connected to the computer, which controls the vehicle and then provides

secure and easy driving. In addition, speed may be limited in curves and special

areas like narrow lanes, to improve safety of the vehicle. The control of the Cycab is

simple and user-friendly and everybody will be able to drive this vehicle without any

special skills. The finger touch screen allows the user to communicate with the

system in order to get information such as localisation, vehicle autonomy, or even a

list of nearby restaurants. One possible application for the Cycab is to form a "virtual

car train" of empty vehicles with only one driver in the first vehicle (also known as Car

Following). Other autonomous driving modes, like radio-control or light markers

guidance may be implemented and research is currently undergoing in INRIA.

55

The Cycab has been designed with mass production and public use

constraints in mind. These considering factors are low cost, compactness,

robustness and easy maintenance. The whole design has been oriented in this way,

from the mechanics to the computer based system.

Length 1.9 m

Width 1.2 m

Weight 300 kg

Power 4 × 1 kW Electric Motors

Drive

System

4 Wheel-Drive, 4 Wheel-Steering

Maximum

Speed

30 km/h

Range 40 km

Capacity 2 adults (+ luggage)

Modes of

Operation

• Manual driving with joystick

• Fully automated driving

• Teleoperated driving

Recharging

System

Induction charging

Security Smart card access

Table 1.1.1.1 : Specifications of Cycab

56

 1. CCD camera for remote control

 2. Joystick for manual driving

 3. Multimedia terminal

 4. Linear camera for platoon driving

 5. Infrared targets for platoon driving

 6. Ultrasonic sensors for collision avoidance

 7. Steering actuator

 8. One electric drive motor per wheel

 9. One electric brake motor per wheel

 10. Four lead-acid batteries and electronic management

Note : The SICK LMS is now attached in front of the Cycab (below the

Linear Camera)

57

Figure 1.1.1.1 : Layout of Cycab

58

Photo 1.1.1.1 : Cycab (with SICK LMS) at INRIA Rhone-

Alpes

From Photo 1.1.1.1, it can be seen that the Cycab at INRIA now has a SICK LMS

attached to the front (centralised position).

1.1.2 Mechanics and Electronics of New Cycab

The mechanics is based on a small electrical golf car frame, already produced in

small series. The use of four identical wheel motor blocks, allows cost reductions (by

re-using identical parts) and volume (four small engines with small power controllers

are easier to build and integrate than a big one with a high power controller).

Consequently, the architecture is modular and the vehicle is easier to drive (the four

SICK LMS

59

wheels are propulsive and directive). The steering is made through an electrical jack

mechanically linked to all the wheels. Each wheel motor block has it's own power

amplifier, driven by the new Motorola MPC555 microcontroller. This microcontroller is

very well suited for motor control in automobiles and is capable of doing real-time

data transfer. Each wheel node controls a drive motor and a brake motor, with all

their associated sensors (optical encoder, brake torque measurement, temperature

etc.) connected. An additional node is attached to the steering jack and the joystick.

Communications between the nodes are made through a CAN (Controller Area

Network) serial bus. It has been designed specially for automotive applications and

allows safe communications in disturbed environment, with a rate of up to 1Mbits/s. It

carries messages of up to 8 bytes length with 50 per cent control and arbitration bits

overload. The network consists of 5 nodes and an on-board PC, which drives the

screen and the hard disk.

Figure 1.1.2.1 below illustrates the overall network

connections and nodes of the new Cycab in detail. All the 3

MPC555 microcontroller are connected to the Linux PC on

board the Cycab by the CAN network.

It can be seen that there are 2 MPC555 microcontroller in

the network that control the low-level control functions of

the motor nodes in real-time. These control functions that

60

are programmed inside the MPC555 include PID feedback

loop control programs. One of the MPC555 is in charge of

the front wheels and front steering while the other controls

the back wheels and back steering.

The 3rd MPC555 is connected to external sensor equipment

like the SICK LMS in this project. It was proposed that the

communication with the LMS be made via a real-time serial

interface using RS422. This MPC555 is programmed to

control the SICK LMS and retrieve all scan data values from

it. Then, these data are filtered and only the necessary,

required values are sent to the Linux PC via the CAN

network. The Linux PC contains all the high-level

application control programs like Trajectory Planning and

Car Following. When the Linux PC receives the filtered data

from the MPC555, the programs will process these vital

data and generate results based on its control algorithm.

Then, these results are redistributed to the front and back

61

MPC555 for processing. Finally, these 2 MPC555 will

control the motor nodes based on the results.

The network within the dotted zone shown in Figure 1.1.2.1gives a good illustration of

the work scope of this project.

62

Figure 1.1.2.1 : Network Connections in New Cycab

SICK
LMS

MPC555

MPC555
BACK

MPC555
FRONT

LINUX PC

Left Wheel

Back Steering

Right Wheel

Left Wheel

Right Wheel

Front Steering

CAN Network

Joystick

RS232/RS422

63

64

1.1.3 Goals of Cycab

Researchers at INRIA has been working on this intelligent vehicle project with the

following goals in mind:

1.1.3.1 Increase Safety of Road Transportation

It is well known fact that though road transport brings conveniences to people, it is

not safe. In fact, this mode kills hundreds of thousands of people each year

throughout the world, especially young adults and the elderly. Although safety has

improved by one order of magnitude in the last decade through better infrastructure

and safer cars, the rate of improvement has tapered off. The techniques to improve

drastically the safety are based on four approaches:

• Driver monitoring and warning

• Partial control of the vehicle in emergency situations (e.g. Brake system)

• Total control of some of the functions of the vehicle (e.g. Speed)

• Total control of the entire vehicle

1.1.3.2 Minimisation of Energy Consumption

Fossil fuel is limited and consumption of it has only increased every year, thus

threatening the supply. Drastic reductions in the consumption of fossil fuels are one

of the challenges for everyone in the next twenty years. Road transportation has

always been playing the dominant role in the consumption of these fuels and the

trend is going up through two factors: the increase in freight transport by road and a

very high increase in car ownership in emerging countries. Without a radical

departure from existing technologies and practices, the goals set by the countries

65

cannot be met. Thus, new high technology cars running on electricity can be one of

the solutions.

1.1.3.3 Minimisation of Pollutions and Nuisances

In all large cities through the world, air quality is now monitored at frequently

unacceptable levels. Noise levels in cities and near highways is the main complain

by a large percentage of the population. Besides air quality, soil pollution with large

amounts of hydrocarbons going to the sewage system in big cities also poses a

problem.

The objective is to study new transportation modes and in particular, to find ways to

develop multimodality in order to find the most energy efficient way of satisfying

transportation needs. Another approach is to try to influence the needs in order to

reduce them.

1.1.3.4 A More Pleasant Living Environment

Space and energy are 2 resources that are scarce and very limited in almost every

city. Automobiles take up a lot of space in a city (e.g. car parks, roads, highways) and

are one of the highest consumers of energy. Though there is a recent trend towards

"car-free cities", not everyone is satisfied with this idea. There will always be people

who find driving a car more convenient than taking the public transport. It is well

known that public transport is most efficient in terms of space and energy but not very

flexible and that the reverse is true for the private automobile. Therefore, the solution

is to use public transport approach in places where space is limited and allow private

cars in less crowded areas.

66

1.2 Motorola MPC555

1.2.1 Microprocessor Description

The MPC555 is a high-speed 32-bit control unit that combines high-performance data

manipulation capabilities and a large on-chip Flash memory with powerful peripheral

subsystems. This MCU (Micro Controller Unit) is built up from standard modules that

interface through a common intermodule bus (IMB).

The MPC555 incorporates a PowerPC™ Core with a Floating Point Unit, a 26 Kbytes

fast RAM, a 6 Kbytes dual ported RAM for TPU microcode RAM (DPTRAM), 448

Kbytes flash EEPROM with 5 volt programming, a 5 volt I/O system a System

Interface Unit (USIU), a Queued Serial Multi-Channel Module (QSMCM), dual CAN

2.0B controller modules (TouCAN™), dual Time Processor Units (TPU3), a Modular

I/O System (MIOS1) and dual Queued Analogue to Digital Converters (QADC64). It

operates at 40 MHz with dual supply of 3.3 V (for Core), 5 V (for FLASH).

1.2.2 Features

• RISC MCU Central Processing Unit (RCPU)

• Four-Bank Memory Controller

• U-Bus System Interface Unit (USIU)

• Flexible Memory Protection Unit

• 448 Kbytes of CDR MoneT Flash EEPROM Memory (CMF)

• 26 Kbytes of Static RAM

• General-Purpose I/O Support

• Two Time Processor Units (TPU3)

• 18-Channel Modular I/O System (MIOS1)

67

• Two Queued Analogue-to-Digital Converter Modules (QADC)

• Two CAN 2.0B Controller Modules (TouCANs)

• Queued Serial Multi-Channel Module (QSMCM)

Though the MPC555 has a lot of useful features, not all were used in this project. The

2 main features that are of special interest to the project are the TouCANs and

QSMCM modules (highlighted above).

1.2.3 Queued Serial Multi-Channel Module (QSMCM)

The Queued Serial Multi-Channel Module (QSMCM) provides 3 serial communication

interfaces, namely: the Queued Serial Peripheral Interface (QSPI) and 2 Serial

Communication Interfaces (SCI1 and SCI2).

The dual, independent SCIs are used to communicate with external devices and

other MCUs via an asynchronous serial bus. Each SCI is a full-duplex Universal

Asynchronous Receiver Transmitter (UART) serial interface.

For the implementation of a high-speed serial interface between the SICK LMS and

MPC555, the UART serial interface function of the MPC555 was used. Robosoft also

provided some C libraries specific for MPC555, which aided in the programming part

of the implementaion.

The SCI baud rate (bits/sec) can be programmed by writing a 13-bit value to the

SCxBR field in the SCI control register. The baud rate can be calculated as follows:

 SCI Baud Rate = fSYS / 32 × SCxBR

68

Where SCxBR is in the range of {1,2,3,…,8191}.

Nominal Baud Rate Actual Baud Rate Percent Error Value of SCxBR

1250000.00 1250000.00 0.00 1

57600.00 56818.18 -1.36 22

38400.00 37878.79 -1.36 33

32768.00 32894.74 0.39 38

28800.00 29069.77 0.94 43

19200.00 19230.77 0.16 65

14400.00 14367.81 -0.22 87

9600.00 9615.38 0.16 130

4800.00 4807.69 0.16 260

2400.00 2399.23 -0.03 521

1200.00 1199.62 -0.03 1042

600.00 600.09 0.02 2083

300.00 299.98 -0.01 4167

Table 1.2.3.1 : Possible Baud Rate for 40 MHz System Clock

1.2.4 Two CAN 2.0B Controller Modules (TouCANs)

The MPC555 contains 2 CAN 2.0B controller modules (TouCAN). Each TouCAN is a

communication controller that implements the CAN (controller area network) protocol,

an asynchronous communications protocol used in automotive and industrial control

systems. It is a high speed (1 Mbit/sec), short distance, priority based protocol that

69

can run over a variety of mediums (for example, fibre optic cable, an unshielded pair

of twisted pair of wires). The TouCAN supports both the standard and extended

identifier (ID) message formats in the CAN protocol specification, revision 2.0, part B.

Each TouCAN module contains 16 message buffers, which are used for transmit and

receive functions. It also contains message filters, which are used to qualify the

received message IDs when comparing them to the receiving buffer identifiers.

Photo 1.2.4.1 : MPC555 Control Board provided by Robosoft

70

Figure Label Description

1 MPC555

2 Power supply: 18-60V DC (from batteries)

3 BDM Interface (Basic Debug Interface)

4 7 analogue inputs

5 16 logical inputs and 20 logical outputs

6 Synchronous serial lines (SPI)

7 Asynchronous serial lines 1 (port number 0)

8 Asynchronous serial lines 2 (port number 1)

9 CAN bus 1 (port number 0)

10 CAN bus 2 (port number 1)

11 – 14 4 connectors dedicated to axis control (including 1

analogue output per axis)

Table 1.2.4.1 : Description of MPC555 Control Board

Photo 1.2.4.1 and Table 1.2.4.1 above describes in detail the MPC555 control board

that was used in the project. Take note of the designation of the port number to the

CAN bus ports and the serial COM ports, as these designations are crucial during the

implementation of the serial interface.

71

1.3 SICK LMS (Laser Measurement System)

1.3.1 System Description

The LMS (Laser Measurement System) 291-S05 is a divergent laser scanner with a

maximum scanning angle of 180° and a lateral resolution of between 0.25° and 1°

(variable and definable). Also, the laser scan is a planar scan. The accuracy of

measurement in a single shot is about ± 2 cm. With respect to the data transfer rate,

the LMS is capable of transferring all measured values in real-time (via serial

interface) at a baud rate of 500 Kbauds.

Photo 1.3.1.1 : LMS 291-S05

In this project, the LMS291-S05 used is shown in the above Photo 1.3.1.1.

72

1.3.2 Operating Principle

The operating principle of our non-contact Laser Measurement System (LMS) is

based on time-of-flight measurement. The LMS calculates the distance to the object

using the time of flight of pulsed light, i.e. the length of time between sending and

receiving the beam of light (Figure 1.3.2.1).

 An extremely short pulse of light (infrared laser beam) is transmitted towards an

object. Part of the light is reflected back to the unit after a fraction of a second later. A

rotating mirror deflects the pulsed light beam to many points in a semi-circle. The

precise direction is given by an angular sensor on the mirror (laser RADAR). A large

number of coordinates measured in this way are put together to form a model of the

surrounding area's contours. Using the serial interface of the unit, measurements are

transferred in real time (or other specified rates) to a host PC for further evaluation.

Figure 1.3.2.1 : Operating Principle of SICK LMS

Receiver

Rotating mirror

Emitter

73

Figure 1.3.2.2 : Scan Angle and Angular Resolution

As seen from Figure 1.3.2.2, the LMS does a planar scan of either 100° or 180° with

an angular resolution choice of 0.25°, 0.5° or 1°. This implies that for a 180° scan

with 0.5° angular resolution, there will be a total of 361 scan values. ((180×2) + 1(0°

value) = 361). Each scan value consists of 2 bytes of data and all these are important

as the LMS will send the number of data bytes according to the request.

LMS

100° scan

180° scan

74

1.3.3 Specifications (LMS 291-S05)

Dimensions (W×H×D) 155×210×156 (mm)

Maximum Range 80 m (outdoor); 150 m (indoor)

Range (without supplementary

reflectors)

Up to 30 m

Range with minimum reflectivity 1.8% 4 m

Lateral Resolution (mm) 10 mm

Angular resolution 100° Scan: 0.25°/0.5°/1°,

No. Of Scan Values: 401/201/101

180° Scan: 0.5°/1°

No. Of Scan Values: 361/181

Configuration by software

Response times 52 ms with angular resolution of 0.25°

26 ms with angular resolution of 0.5°

13 ms with angular resolution of 1.0°

Interfaces Serial RS-422 or RS-232 switchable

Measurement data Real-time transfer, binary data

Data transfer rate 9.6 / 19.2 / 38.4 / 500 Kbaud

Voltage supply (electronic) 24 VDC ±15%

Laser Protection Class 1 (Eye-safe)

Table 1.3.3.1: Specifications of SICK LMS 291-S05

75

1.3.4 Features

• High-resolution measurement system

• Non-contact, optical measurement over long distances

• High scanning frequency allows high speed movement of objects

• An active system, requiring no illumination of the target area

• No reflectors or markings necessary on target objects

• Background and supporting medium have no affect on measurements

• Any orientation of target objects is possible

• Transfer of measurement data in real time available for further processing or

control functions

• Self-testing, no external testing procedures required

• Suitable for outdoor use

1.3.5 Possible Applications for SICK LMS

The LMS can be used for standard applications involving measurement of objects

and position determination, monitoring areas and vehicle guidance and collision

control.

The fundamental ability of laser scanners to offer accurate contour measurement is a

very important asset for use in the above applications. Advanced laser technology is

relatively straightforward to acquire, install and maintain. It can provide the precision,

which adds substantial value to the container handling process.

Collision control is a problem in many areas, for example in the container-handling

terminal. The laser scanner’s function is to monitor one or more zones in front of the

76

fixed path or mobile equipment and to alert an operator of a potential collision; i.e. it

functions as a system designed to avoid collision. This function can be extended to

many other areas like car parking guiding and car following applications.

1.3.6 LMI 400

The LMI (Laser Measurement Interface) is the universal evaluation system for the

distance measurement values generated by the LMS. One or more LMS can be

combined and connected to the LMI to create a single system. It can be flexibly

controlled according to the particular application used. The LMI 400 receives the data

from the LMS in real-time using an asynchronous serial interface so that every scan

can be processed by the LMI. A maximum of 4 LMS sensors can be physically

connected to a LMI.

A LMS (stand-alone) can be connected directly, without an LMI, for diagnosis and

requests for measured values. Thus, in this project, there is no requirement for a LMI.

Figure 1.3.6.1 below illustrates the maximum configuration possible for a LMI

management system.

77

Figure 1.3 .6.1 : Maximum Configuration for a LMI System

HOST
(LINUX PC)

Communicates with
LMI via RS232/422

Receives LMS data in real-time
via RS422

LMI-SYSTEM

Communicates with host via
RS232/422

LMS 1

Transmit scan data
under real-time
conditions

LMS 2

Transmit scan data
under real-time
conditions

LMS 3

Transmit scan data
under real-time
conditions

LMS 4

Transmit scan data
under real-time
conditions

RS422

78

CHAPTER II

IMPLEMENTATION OF REAL-TIME SERIAL INTERFACE

In this chapter, detailed description and explanation of the implementation of a real-

time serial interface between MPC555 and SICK LMS will be given. Basically, it will

be split into 3 main parts; the first will explain the real-time serial interface, followed

by the explanation of the serial functions of the MPC555. The final part shall look into

the description and explanation of programming the SICK LMS.

2.1 Real-Time Serial Interface

The present Cycab based on the older Motorola MC68332 microcontroller (without

CAN bus support) is programmed only to handle data transfer rate of 9.6 Kbauds

between the equipped LMS and a laptop. Also, the MC68332 microcontroller does

not have a CAN bus interface, which limits the number of devices that it, can control.

With the new Cycab, the new generation MPC555 microcontrollers can handle up to

a maximum data transfer rate of 1250 Kbauds, which is more than sufficient to have

real-time data transfer between the MPC555 and LMS. To have real-time data

transfer, a minimum baud rate of 500 Kbauds is required.

Figure 2.1.1 : Configuration of Required Serial Interface

LMS

Transmit scan data
under real-time
conditions

Sends command to LMS via
RS422

MPC555

Receives LMS data in real-time
via RS422

RS422 at
500
Kbaud

LIN
UX
PC
(on

CAN Bus
(CAN 1)

79

2.1.1 Serial Interface

The serial interface for the real-time data transfer is of type RS422. However, due to

a hardware incompatibility problem (refer to MPC555 Interface Port) between the port

interface card and the MPC555, RS232 was being used in the project.

RS means Recommended Standard. Both RS232 and RS422 are of full duplex type.

Full duplex devices can transmit and receive data at the same time. The maximum

data speed for a RS232 is about 115 Kbauds while the RS422 can go up to about 10

Mbauds. The RS232/RS422 serial interface used has a Sub-D 9 pin connector and

this is commonly used in interfacing between computer peripherals. Figure 2.1.1.1

shows the front view of a typical Sub-D 9 pin connector that was used.

Figure 2.1.1.1 : Sub-D 9 Pin Connector View

2.1.2 Serial Format

Before commencing with the programming of the real-time serial interface

implementation, the serial format of the data/message frames that MPC555 and

SICK LMS will send/receive must be known. As the 2 hardware are from 2 entirely

different manufacturers, there will always be the possibility of hardware

incompatibility problems. It is very important that both the receiving and transmitting

devices use the same data frame format. With the same data frame format defined,

80

then both hardware can capture and send data successfully based on the defined

format.

All data frames must have a start bit and at least one stop bit. The SCI (Serial

Communication Interface) in MPC555 provides hardware support for both 10-bit and

11-bit frames. In the case of message frames sent by the SICK LMS, a byte of data

consists of 1 start bit, 8 data bits, 0 parity bit and 1 stop bit. With reference to

Table 2.1.2.1 below, the different data frame formats that MPC555 can support is

shown. Thus, basically the messages sent between the 2 devices are in 10-bit frame

format. With the data frame format known, it can thus be specified in the initialisation

of the UART interface in MPC555. Once specified, the MPC555 UART interface will

be able to send and capture data successfully to and from SICK LMS. This will

ensure that the MPC555 gets the correct data byte position.

10-Bit Frames

Start Data Parity/Control Stop

1 7 - 2

1 7 1 1

1 8 - 1

11-Bit Frames

1 7 1 2

1 8 1 1

Table 2.1.2.1: Serial Frame Formats

81

2.2 MPC555 Control Board

2.2.1 UART Serial Interface Functions in C Language

Robosoft had provided some C language libraries specific for the MPC555

microcontroller. The libraries written for the UART serial interface were utilised in the

implementation of the real-time serial interface between the MPC555 and SICK LMS.

The figure 2.2.1.1 below lists out the main functions used in the programming.

 Function Declaration Comments

1 Int UARTInit (int UartNb, int Baud, int nbit, int

nstop, int parity, int ButPtr, int Bufsize)

Initialise UART serial

interface on MPC555.

Return 0 if all is ok.

2 int UARTClose (int UartNb) Disable UART serial

interface when error is

detected.

3 Int UARTGetChar (int UartNb, char *C) Return char read from

target (SICK LMS) if any. If

no char is in the buffer,

then return

Err_SCCNoChar.

4 Int UARTGetWaitChar (int UartNb, char *C) Wait for char read.

5 int UARTPutChar (int UartNb, char x) Input char to target. Return

0 if all is ok.

Table 2.2.1.1 : MPC555 UART Interface Functions

82

2.2.2 MPC555 Interface Ports

In order for MPC555 to be able to communicate with the LMS, the MPC555’s COM

serial port has to be initialised. The MPC555 control board used in this project has 6

ports: 2 CAN Bus ports, 3 serial ports and 1 free port (refer to Photo 2.2.2.2). The

written program was downloaded into the MPC555 control board via the CAN port 1.

The new Cycab will be based on a Linux PC (Personal Computer) installed with a

CAN Interface Card and all the main nodes of the Cycab will be connected by CAN

bus to the MPC555.

Photo 2.2.2.1 : MPC555 Control Board with Connections (Top)

However, due to hardware incompatibility between the port interface card and

MPC555, the maximum baud rate that the port can handle is about 250 Kbauds

whereas the minimum baud rate for real-time data transfer must be at least 500

CAN
Bus LCD

Screen

RS 232 or
RS 422 to
SICK LMS

48 VDC Power
Supply

83

Kbauds. Thus, the serial interface was being tested at 19.2 Kbauds instead (until

Robosoft provides a new port interface).

Photo 2.2.2.2 : MPC555 Control Board with Connections (Front)

CAN Port 1
Serial COM 1

Free CAN
Serial

SPI

84

Photo 2.2.2.3 : SICK LMS with Connections (Top)

Photo 2.2.2.3 above shows a top view of the SICK LMS attached to the Cycab. It can

be seen that the RS232/RS422 cable from the MPC555 are connected to the right

port of the SICK LMS.

24 VDC Power
Supply RS232 or

RS422 from
MPC555

Indicator
lights

85

2.3 SICK LMS

2.3.1 LMS Telegram Structure

The SICK LMS requires pre-defined telegrams for communication with the Host,

which can either be a computer or in this case, a microcontroller (MPC555). Data is

transferred in binary format (but written and displayed in hexadecimal format) and

transfer is initiated by the STX byte (start of text), 02H. In addition, the transferred

data is also in INTEL data format. This implies that word transfer takes place with the

lower address and the least significant byte first, followed by the bytes of higher

address and significance. The structure of the telegrams sent and received must

comply with the pre-defined telegram structure throughout the entire program.

Otherwise, errors will occur and make troubleshooting difficult. Table 2.3.1.1 below

shows a typical LMS telegram structure and Table 2.3.1.2 describes the structure in

detail.

STX ADR Len CMD Data ……(N bytes) Status CRC

Table 2.3.1.1 : LMS Telegram Structure

86

Designation Data width

(bits)

Description

STX 8 Start byte (02H)

ADR 8 Address of the LMS to be contacted.

Note: The LMS adds the value 80H to the address

when responding to the Host Computer.

Len 16 Number of data bytes (CMD+Data+Status)

CMD 8 Command byte sent to the LMS.

When responding, LMS will send the original command

byte with the addition of 80H to the value.

Data N × 8 Optional, depends on the previous command.

Status 8 Optional, the LMS transmits the status message only

when it is sending out data.

When sending command to LMS, no status message is

transmitted.

CRC 16 CRC checksum for entire data.

Table 2.3.1.2 : Description of LMS Telegram Structure

With reference to the above tables, it can be seen that a typical telegram sent to LMS

consists of the following bytes in sequence: STX, ADR, LEN Low, LEN High, CMD, N

× Data, Status, CRC Low, CRC High. One very important definition to note is the 2

Len bytes, which describes the length of the following data bytes except the CRC

bytes. That means the Len bytes refer to the total number of bytes in CMD, Data and

Status only. Caution must be taken not to confuse these data bytes with the actual N

× Data bytes. As the number of Data bytes, N, sent is different every time, thus it is

necessary to read the Len bytes and minus off 2 bytes (CMD and Status) in order to

get the number of Data bytes. In this project, the defined address ADR of the SICK

LMS is 0x01 (01H = 1).

87

2.3.2 Organisation of Telegrams

In order to establish a good communication interface between the SICK LMS and a

Host system (MPC555 in this project), a comprehensive list of different telegrams

doing different functions is required. These telegrams can be organised into 2 main

categories by their direction of data transfer: Host to LMS and LMS to Host.

Subsequently, the telegram list can be furthur categorised into the following different

sub-categories:

• Telegrams from Host to LMS

♦ Initialisation and Reset of the LMS

♦ Select/Change of operating mode of the LMS

♦ Select/Change of configuration of the LMS

♦ Request for measured (scan) values

♦ Request for LMS status data

♦ Request for LMS configuration data

• Telegrams from LMS to Host

♦ Response telegrams by LMS with respect to telegrams sent by Host

In addition, when request telegrams are sent from Host to LMS, a software

handshake will be initiated by the LMS. Upon the receipt of a correct request, the

LMS will send out a character ACK (06H) before the entire response message.

However, in the case that an error is detected, the LMS responds with a NAK (15H).

88

For synchronisation purposes, the time interval allowed between 2 bytes of data in a

telegram is between a minimum of 55 µs and a maximum of 6 ms. When violated, the

telegram will be ignored. For a more complete list of telegrams for the LMS, refer to

Appendix A.

2.3.3 Structure of LMS Status Byte

The status byte consists of 8 bits. As seen from the figure below, the status byte

gives useful information like Error encountered if any or other problems like Pollution.

Bit Position Description

0 Combination of bits 0,1 and 2 are used to produce values 0 – 4.

1

2 Value Meaning

0 no error

1 info

2 warning

3 error

4 fatal error

3 Bits 3 and 4 produce data source designators.

4 00 LMS –xx1 to –xx4

01 LMI

10 LMS –xx6

11 Reserved

5 State of RESTART input: 1 – HIGH, 0 – LOW

6 Implausible measured value.

7 Pollution

89

Table 2.3.3.1: Description of LMS Status Byte

With the above Table 2.3.3.1, the LMS telegrams sent or received can be interpreted

and verification functions can also be written.

2.3.4 Example of Telegram Transfer

To have a clearer picture of the telegram structure, an example of a sent telegram

and a received telegram, extracted from one of the serial interface test programs

done, is described here.

2.3.4.1 Command sent from MPC555 (Host) to LMS

STX ADR Len CMD Data

 LOW HIGH S I C K _ L M S

02H 00H 0AH 00H 20H 00H 53H 49H 43H 4BH 5FH 4CH 4DH 53H

CRC

LOW HIGH

BEH C5H

Table 2.3.4.1 : Command Telegram sent from MPC555 to LMS

2.3.4.2 Interpretation of Command Telegram

02H Start character for intialisation of transmission.

00H LMS address (Broadcast addr to all LMS)

000AH Length of data bytes = 10 (CMD+Data)

20H Command byte for Select/Change of Operating Mode

00H Operating Mode = Installation mode for config and setting parameter

90

53H … 53H Installation mode default password = SICK_LMS

C5BEH CRC16 Checksum return value

Table 2.3.4.2 : Interpretation of Command Telegram

2.3.4.3 Response sent from LMS to MPC555 (Host)

ACK STX ADR Len CMD Data Status CRC

 (+80H) LOW HIGH LOW HIGH

06H 02H 80H 03H 00H A0H 00H 10H 16H 0AH

Table 2.3.4.3 : Response Telegram sent from LMS to MPC555

2.3.4.4 Interpretation of Response Telegram

06H Acknowledge character when response is received correctly within

60 ms. Otherwise, 15H (NAK = Not Acknowledged) will appear.

02H Start character for intialisation of transmission.

80H LMS address (Broadcast addr to all LMS) + 80H

0003H Length of data bytes = 3 (CMD+Data+Status)

A0H Command byte for Response to Select/Change of Operating Mode

00H Response Status = Oper Mode change successful

10H Status byte

0A16H CRC16 Checksum return value.

Table 2.3.4.4 : Interpretation of Response Telegram

91

An important point to note and remember is that no Status byte is transmitted when a

request command is sent to LMS. The Status byte is included only when the LMS is

transmitting response messages. Also, for responses from LMS, an ACK byte will be

included before the STX byte. The Len bytes when converted from hexadecimal to

decimal give the number of data bytes that are enclosed within the 2 red lines.

2.3.5 CRC16 Checksum and Other Verification Methods

In ensuring transfer reliability, a block check is done at the end of the telegram with a

CRC checksum over the entire data package with CRC 16 polynomial generator.

CRC, Cyclic Redundancy Check is a common method for detecting data

transmission errors. The CRC will perform a mathematical calculation on the data

block to be sent and generates a unique checksum value that represents the content

and organisation of that data. Subsequently, the receiving station also generates a

checksum value of the received data based on the CRC algorithm. Then, both CRC

checksum values at the sending and receiving stations are compared to make sure

that they are the same. If they are different, it can be concluded that errors occurred

during the sending process.

During the software handshake (refer to Chapter 2.3.2, Organisation of Telegrams),

the LMS does nothing if the wrong ADR is used. When the ADR is correct but the

CRC checksum is incorrect, a NAK will be sent. Finally, in the case where both ADR

and CRC checksum is correct, the LMS will respond with ACK.

Another verification method used was to obtain the return values (0 or 1) of certain

functions. For example, in the initialisation of the UART serial interface of the

MPC555, the function UARTInit will return a value 0 if there is no error. Thus, a

92

simple ‘if’ verification statement in the program can help test if the UART is initialised

properly. These verification measures when implemented in the program will help in

easing the task of troubleshooting or debugging as the user will know at which step

the program encountered the error.

93

2.3.6 The Makefile

A makefile is like an instruction book that tells the compiler which library to look for,

which .c program files and .o object files to compile. Also, it indicates the name of the

target files and the executable file that is to be compiled.

In order to download a program into the MPC555, the C program file with extension

.c must first be converted into a format understandable by the downloader. The

Makefile and some libraries provided by Robosoft contain specific functions for

compiling a program to work in MPC555.

The first part of the Makefile works like a normal Makefile. It first compiles the .c

program files into .o object files. Then, the .o object files are furthur compiled into an

ELF binary executable file format. A function, elf2sdxbin, will convert the ELF binary

executable file into a SynDEX binary file format (.bin) understandable by the

downloader. Then, the downloader function, dwnbin, will download the .bin file into

the MPC555. MPC555 will run the program upon receiving the .bin file.

Makefile function Description

elf2sdxbin elf2sdxbin [input file] [output file]

dwnbin dwnbin [input file] [SID]

Table 2.3.6.1 : Description of Makefile Functions of MPC555

Table 2.3.6.1 gives a good description of how the command lines in the Makefile

were written. SID is the ID number of the MPC555 microcontroller. The MPC555

94

given in this project has an ID of 4014H. However, the Makefile requires the user to

input the SID as a decimal value, so SID is actually 16404.

Figure 2.3.6.1 : Example of Makefile Commands for MPC555 Program

From Figure 2.3.6.1, the sample in this case was taken from one of the test programs

done during the attachment. The C program that was written was TEST.c and after

the initial normal compilation, an ELF binary executable file, TEST, was created. This

was the input file name for the command line elf2sdxbin and the name given for the

output file was TEST.bin. After the SynDEX binary file TEST.bin was created, the

downloader command line, dwnbin, was inserted with the input file name of TEST.bin

and subsequently, the MPC555 ID in decimal. This entire process will take place

when the user does a Make Download command or Makefile command. For the

complete Makefile program, please refer to Appendix E.

Sample Makefile Commands

Download :

 elf2sdxbin TEST TEST.bin

 dwnbin TEST.bin 16404

95

2.4 The Simulated Environment

The SICK LMS is connected to the MPC555 via RS232/RS422 cable to port COM 1.

The Figure 2.4.1 below illustrates the overview of the entire setup. In the case of this

project, a Linux PC was used in programming, compilation and downloading of the

completed software into the MPC555. Thus, the simulated environment is in fact the

same as the actual environment on the new Cycab.

A FALCO Infinity series computer was used during the testing and simulation process

of the serial interface program. It is mainly used for inputting responses to the

MPC555 and viewing responses from the LMS.

Figure 2.4.1 : Overview of Simulated Environment

LMS

Transmit scan data
under real-time
conditions

Sends command to LMS via
RS422

MPC555

Receives LMS data in real-time
via RS422

RS422 at
38.4Kbau
d

LIN
UX
PC

CAN Bus
(CAN 1)

FALCO Infinity
Series
Computer

To input responses

RS232 at
38.4Kbau
d

96

2.5 The Flow of Program

2.5.1 Data Exchange between SICK LMS and MPC555

In this C program of the implementation of a real-time serial interface, there are a lot

of data flow between the LMS and the MPC555. These exchanges of data may be

confusing and the LMS is programmed in an orderly manner such that the

initialisation, request and receipt of data are in a proper sequence. Basically, the data

exchanges are categorised into the following parts in sequence in the program.

1) The configuration/operating mode data of LMS

2) The specification parameters of LMS measurement

3) The scan values data

Figure 2.5.1.1 : Request for Change in Operating Mode with Response

SI
C
K

MPC555
Interface

Port

Select/Change of configuration/operating mode

ACK

Data of operating mode changed

97

Figure 2.5.1.2 : Request for Change in Operating Mode without Response

Figure 2.5.1.3 : Request for Scan Values (continuous)

SI
C
K

MPC555
Interface

Port

Select/Change of configuration/operating mode

NAK

SI
C
K
LMS

MPC555
Interface

Port

Request for measured values (continuous)

ACK

Data of successful request of values

Scan values 1

Scan values 361

98

Figure 2.5.1.1 shows a flow diagram of a good request for Select/Change of

Configuration/Operating Mode. Upon verifying that the request is good, an ACK byte

is sent followed by the mode changed data. An example of a bad request (with

incorrect CRC) is shown in Figure 2.5.1.2. No data is transferred after the NAK byte

is sent.

For the Request of Scan Values (continuous), the normal procedure takes place

(Figure 2.5.1.3) with the request sent to LMS and after verification, ACK is sent back

to MPC555. Following the ACK, the normal response message describing a

successful request for scan values is sent. After that, the scan values will then be

sent. Depending on the scan angle and the angular resolution chosen, the number of

scan values will differ. For this project, the default scan angle of 180° and angular

resolution of 0.5° was chosen. Thus, 361 scan values will be sent. Refer to Table

1.3.3.1 for details of number of scan values. The retrieving of the 361 values (after a

request for the scan values) will be explained in more detail in the next section 2.5.2,

Main Program Flow.

99

2.5.2 Main Program Flow

Figure 2.5 .2.1 : Initialisation Flow of Main Program

UARTInit
(Initialise UART

serial interface of
MPC555)

SICKInit
(Initialise LMS)

OK

Er
Return 0

Return 1

UARTClo
se

Return 0

OK(Msg
sent)

Er
Else

SICKChkACK

SICKGetMsg

OK

Return 0

SICK_CRC_Check

OK

Return 1

Er

Er
Return 0

Return 1

SICKInit2 (Chg of Baud Rate)
Similar Process

100

SICKInit3
(Request LMS to

send all scan
values continuosly)

OK

Er

UARTClo
se

SICKChkACK

SICKGetMsg

SICK_CRC_Check

SICKGetData

SICK_CRC_Check

OK

OK

OK

Er

Er

Er

Application/Data
Treatment

Return 0

Return 0

Return 0

Return 0

Return 1

Return 1

Return 1

Return 1

Figure 2.5.2.2 : Capturing of Scan Values in Main Program

101

As mentioned earlier in Chapter 2.5.1, the data exchange between SICK LMS and

MPC555 can be categorised into 3 categories and the main program can also be

categorised in the same way. In Figure 2.5.2.1, the initialisation of the UART interface

of MPC555 and SICK LMS is shown and this is the first part of the main program.

The UART was first initialised (by UARTInit) and if the return value is a 0, it means

that the UART was initialised properly. From the program, the function declaration is

UARTInit (0, 19200, 8, 1, 0, &Buffer, BufSize). In sequence, 0 refers to the serial

COM 1 port number of the MPC555 control board; 19200 refers to the desired baud

rate; 8 is the number of data bits; 1 is the number of stop bit and finally 0 is the

number of parity bits. &Buffer is the pointer to the declared buffer while BufSize is the

size of the buffer which had been declared to be 128 bytes in the beginning of the

program.

After the UART was initialised, the program continues to the next step of sending a

command string, SICKInit, to the LMS. This is to initialise the LMS with specifications

corresponding to that of the MPC555 UART serial interface. With reference to the

program, the LMS telegram structure (Table 2.3.1.2) and the LMS telegram list, the

initialisation telegram SICKInit can be interpreted. However, the array init[16] was

declared with a size of 16 bytes but only 14 bytes were included. The reason is the

last 2 bytes are reserved for the CRC bytes and they are created by the function

SICKCreateCRC. The block of data from the 1st byte to the 14th byte are included in

the SICKCreateCRC calculation. After that, the CRC Low byte is put into init[14] and

CRC High byte into init[15]. This is because data is transferred in INTEL data format

for SICK LMS.

102

The next step in the program is the function SICKChkACK where it will capture the 1st

response byte and determine if it is an ACK byte. If so, it will continue capturing the

rest of the message by SICKGetMsg. Otherwise, if it is a NAK or rubbish, error has

occurred and the program will proceed to UARTClose (0) where the UART interface

of the MPC555 will be closed. After getting the entire message, the function

SICK_CRC_Check will create a CRC value based on the entire message block

except the received CRC bytes. Then, the received CRC bytes will be converted into

decimal format (CRCL + (CRCH x 256)). Both received and created CRC values will

be compared and if they are the same, the program will continue.

Following command strings are sent to control the LMS to commence with a scan

(180° scan and 0.5° angular resolution by default) and to send back the scan data

(361 values) to the MPC555.

Figure 2.5.2.2 shows the process of capturing the 361 scan values in the main

program. First of all, SICKInit3 is sent with the request of all the scan data values

(continuous). The same process as the earlier functions is run though: SICKChkACK,

SICKGetMsg and SICK_CRC_Check. This time, after the MPC555 receives the

message that the request for all 361 scan values was successful (by SICKGetMsg),

the sending will not stop there. The LMS will proceed to send another string of data

beginning with STX (no ACK or NAK byte for this) and this string contains all the 361

values. Also, since each scan value consists of 2 bytes, the total length of the entire

string is (361x2)+4 = 726 bytes. The additional 4 bytes are the CMD, Status, LENL

and LENH.

103

After getting the entire string of scan values, a CRC check is done again and then the

program will go to the next part: treatment of the scan values for Application

programs like Car Following and Obstacle Avoidance. The complete program on the

serial interface can be found in Appendix D.

104

CHAPTER III

PROCESSING OF SCAN DATA AND

APPLICATION PROGRAM

In this third Chapter, the report will focus on the method of data extraction for
processing and the application programs : Obstacle Avoidance and Car Following. A
researcher did before some previous work on the above for the old Cycab equipped
with the MC68332 microprocessor. The objective now is to translate these into a
suitable format for the MPC555 microcontroller installed in the new Cycab.

3.1 Obstacle Avoidance

3.1.1 LMS Programmable Scanning Field

As explained earlier in the Chapters 1 and 2, the SICK LMS can be requested to
change its operating mode, baud rate, type of data to be sent, method of data
sending (e.g. continuous) and many others. In fact, the LMS can be instructed to
define its scanning field. Figure 3.1.1.1 below illustrates 4 possible configurations of
scanning field. Configuration 1 is the normal configuration where the laser from LMS
makes either a 100° or 180° scan. Configuration 2 and 4 are a defined scanning field
where a desired area is ‘marked-out’. The LMS can be programmed to define the
scanning field in a rectangular field or a semi-circular field. Furthermore, up to 3
scanning fields can be configured active simultaneously and this is shown as
configuration 3.

1 2

105

Figure 3.1.1.1 : Possible Configurations of LMS Scanning Field

3.1.2 Implementation of Obstacle Avoidance

The purpose of an Obstacle Avoidance application is to implement a safety feature to

the Cycab, where it will either stop or move out of the way when an obstacle is

detected. This application is simple in terms of data extraction and processing, as it

does not need special processing of the scan data.

It can be seen in configuration 4 of Figure 3.1.1.1 above, the LMS was programmed

to scan a designated area in front of it. For example, an area of 5 m by 5 m can be

defined and to increase the safety distance of the Cycab, a bigger field can be

defined. The size of the field can be easily defined by sending the request te legram

to the LMS.

Then, the Obstacle Avoidance will be programmed to check for a change in the scan

data received. As soon as an obstacle is within the defined field boundary, the

program will detect a change and send a request to the MPC555 subsequently to

either stop the vehicle or steer away.

3.2 Car Following

3.2.1 Extraction and Processing of Data

3 4

106

For sophisticated and complicated application like Car Following, it is necessary to

retrieve and process the scan data values. When the LMS sends the scan values

back to the Host (MPC555), it is capable of sending the data in different format/type.

All the measured data sent by the SICK LMS come from the following information :

• The angle of emitting laser beam

• The distance

• The level of intensity of the reflected beam

The data processing by the LMS will provide the following information :

• Data values of 1 complete scan in polar coordinates and the intensity level of

the reflected beam

• Averaged values

• Partitioned values

• Averaged partitioned values

• The shortest perpendicular distance with respect to the radius of the scan

• The shortest distance value in each segment

• Cartesian coordinates

Figure 3.2.1.1 below illustrates a typical process of the extraction and processing of

scan data by the LMS.

Scan

Selection

of data

format to

Filtering of
required
data

Processin
g of data Data

107

Figure 3.2.1.1 : Extraction and Processing of Data

3.2.2 Detection of Reflector Target

The SICK LMS detects the distance of objects in front of it by the principle of time-of-
flight as explained in Chapter 1.3.2. This implies that the total time taken for the
emitted laser beam to reach the target and for the reflected laser beam to return to
the captor, multiplied by the speed of light constant will produce the distance. Though
the SICK LMS is able to detect most objects in front of it, the intensity of the reflected
laser beam detected by it is much weaker than the emitted laser beam. This also
implies that the SICK LMS may not be able to detect objects of certain material very
well. Thus, poor reflectors of light may not be well detected and do not make good
targets.

For the Car Following application, the objective is to program the SICK LMS to detect

another Cycab in front, so that the 2nd Cycab will follow the leading one. In order to

have a higher intensity reflected laser beam, 2 special light reflecting targets were

placed behind the Cycab. Then, the position of the 2 reflector targets (back of the

Cycab) can be easily detected, as they will produce a very high intensity of reflected

laser beam compared to the surrounding environment.

3.2.3 Mathematical Algorithm

For the application program of Car Following, the following 3 data are necessary :

• Angular position a of the target (centre of the Cycab)

• Distance d of the target

• Angle ?, the relative orientation of the axis of the 2 vehicles

108

y1

x1

α1

y2

x2

α2

d1 d2

dc

B

C1

C2

α

θ

d

x

y

Figure 3.2.3.1 : Mathematical Diagram Representation of Car Following

As illustrated in Figure 3.2.3.1, C1 and C2 are the centres of the 2 reflector targets

fixed to the back of the leading Cycab. In order to obtain the 3 data a, d and ? for the

Car Following application, the following equations derived from Figure 3.1.2.1 were

used.

x1 = d1(cosa1) x2 = d2(cosa2)

y1 = d1(sina1) y2 = d2(sina2)

dc = v[(x1 – x2)2 + (y1 – y2)2]

x = (x1 + x2)/2 y = (y1 + y2)/2

a = (a1 + a2)/2

? = -argsin[(y2 – y1)/dc]

Leadi
ng
Cycab

LMS on
Following

109

where

x and y : Cartesian coordinates of the leading vehicle (relative to the following

vehicle)

d : Direct distance between the 2 vehicles (with respect to the centre of the vehicle)

? : Angle between the longitudinal axis of each vehicle

a : Angular position of the leading vehicle with respect to the front of the following

vehicle

dc : Distance between the 2 reflector targets, C1 and C2

The program will filter aside all the required values like the Cartesian coordinates in

order to get the 3 required values for Car Following application.

Both applications are currently in the process of implementation.

110

CHAPTER IV

COMMENTS AND DISCUSSIONS

4.1 Limitations of SICK LMS

The current laser sensor used, SICK LMS, conducts a scan of up to 180° and a high

angular resolution of 0.25°. It is configurable from the type of scanning field required

to the type of scan data value the user wants to retrieve. However, its drawback is

that the scan is only in planar form. Thus, the laser scanning zone is like a flat piece

of paper cutting across the area in front. This may pose some problems like the

height of obstacles or reflecting beacons must not be too short or too high. They must

coincide with the line of sight of the LMS laser beam. This problem was actually

encountered when tests were done on the Cycab. The securing screws on the SICK

LMS that attaches the LMS to the front of Cycab are not tight enough.

This problem, along with the weight of the LMS, pulls and tilts the LMS down. Though

the range of tilt is not big (less than 1 cm) at the point of attachment, this difference in

height is greatly magnified at a further distance from the Cycab. This caused the

inability of the laser to reach the desired target. If the tilt height difference is greater

than the height of the reflector target (of the leading Cycab) in a Car Following

application, the LMS will not be able to detect the reflectors and the application will

fail.

Therefore, a proposed solution would be to increase the overall reflector height or to

implement a more secure attachment system for the SICK LMS.

111

Furthermore, with scan data from a planar scan, it is only possible to plot out a 2-

Dimensional (2D) plan of the specified scanning field. Though a 2D plan may prove

just sufficient for Obstacle Avoidance application, the user will not be able to know

the obstacle’s size, shape and other features that may allow the user to have more

decision making choices. For example, if a large truck is in front of the Cycab, the

user may either want the Cycab to slow down and keep a longer safety distance, or

take another available route. Thus, a simple 3-Dimensional (3D) plan model of the

specified scanning field can provide much more data and extend the uses of the

application further. Pattern comparison (e.g. compares the shape, size of obstacle)

can then be incorporated and provide information like the nature of the obstacle.

These shall be feedback to the Cycab, which will make decisions based on it.

4.2 Processing Time

Time is a very important factor in decision-making and it applies to the application

programs of the Cycab as well. The SICK LMS does a scan within a certain time and

this time depends on the scan angle and angular resolution. For example, in this

project where the LMS is requested do a 180° scan with an angular resolution of

0.5°, the time taken to complete a scan is 26 ms. However, the time required

increases as the angular resolution increases.

The overall objective of the Cycab is to have application programs that guide it safely

and yet fast enough to satisfy the needs of people for public transport. Thus, if the

response time for MPC555 to complete a task (e.g. To avoid an oncoming obstacle)

is too long (> 500 ms), the vehicle may not perform as predicted to avoid the obstacle

112

in time. In order to curb this problem of long processing time, it will be better to keep

the program in MPC555 to a suitable length.

4.3 Addition of a User Menu

The current program done for the serial interface between MPC555 and SICK LMS is

a simple one. As can be read from the report, the LMS has a lot of functions and

each request and response corresponds to a different telegram, so it will be better if a

user menu with all the different requests is included in the program. With this menu,

the program will be user-friendlier and running of the application programs can also

be included in the menu.

4.4 Minor Problems Encountered

During the course of work with the SICK LMS, there were often instances of

insufficient power to power the LMS. In fact, the LMS is a big consumer of energy

and this actually shortens the life span of the battery run time. Thus, it is suggested

that the battery of the Cycab be recharged after it is being used for a fixed period of

time.

For the MPC555, it has a problem of hardware reset not working. Sometimes, when a

program ‘hangs’ midway while processing in the MPC555, doing a hardware reset of

the MPC555 will not reset and clear all the buffers. Power to the MPC555 has to be

cut off completely for a few minutes before the MPC555 can operate again. This

problem will be reported to Robosoft for their action.

CHAPTER V INRIA Rhone-Alpes

56

CHAPTER V
SUMMARY AND CONCLUSION
For this period of Industrial Attachment with INRIA Rhone-Alpes, the project given

was very good with a clear objective and direction. Till this moment, the goal of

implementing a high-speed serial interface between the MPC555 and the SICK LMS

had been achieved. Although tests at the initially proposed 500 Kbauds were not

carried out (due to problems with the MPC555 board provided), tests at lower baud

rates were done under the direction of my supervisor. Also, the program written to

implement the serial interface works well at the other lower baud rates, so there

should not be much problem for real-time interfacing.

The next objective of implementing application programs (Obstacle Avoidance and

Car Following) for the Cycab is currently being carried out. These applications involve

programming the MPC555 and the SICK LMS to conduct and collect different scan

data, thereby making use of the implemented serial interface too. These

implementations of application programs will be achieved by the end of the

attachment.

Due to the numerous functions that the SICK LMS can do, there were a lot of

confusion and doubts over the functions of the telegrams. However, tests done while

implementing the serial interface provided results that helped clear some of the

doubts and they were documented in this report as well.

On the whole, this project involving both hardware and software implementation has

been very fruitful. A lot of experience was gained in working with hardware interfacing

and the hardware/software implementation. Due to the different nature of the

CHAPTER V INRIA Rhone-Alpes

57

hardware involved, it was necessary to have a clear basic understanding of them in a

very short time. This taught me the skills of filtering out the more important theory and

information whenever there is a need to work with new hardware. In addition, the

importance of good and clear documentation of hardware specifications, theory and

correct procedures was also appreciated. A good documentation will be very useful

to fellow researchers working on follow-up projects.

Working as a junior researcher also allowed me to experience the working

environment of a researcher. Everyone in the same project group contributes to the

final goal of the project. For example, the Cycab is quite a big project that involves

many researchers. From the mechanics and electronics of the vehicle, linear camera

guiding to the serial interfacing of the SICK LMS, all these contributions are all made

by different researchers with the same final aim. Therefore, teamwork is very

important in research.

Finally, this report was written to be as clear and concise as possible, with the aim of

serving as a guide to anyone who will be working on similar or follow-up projects.

APPENDIX A INRIA Rhone-Alpes

A1

REFERENCES
Cycab

[1] INRIA Homepage

http://www.inria.fr

[2] INRIA Rhone-Alpes Homepage

http://www.inrialpes.fr

[3] Project LARA / Cycab Web page

 http://www-lara.inria.fr/cycaba/

MPC555

[4] Motorola Homepage

http://e-www.motorola.com

[5] Motorola, “MPC555 User Manual”

[6] Motorola, “MPC555 Evaluation Board, Quick Reference”

SICK LMS

[7] SICK Homepage

 http://www.sick.fr/

[8] SICK, “LMS/LMI 400 – Definition of telegrams between the user interface and

LMS or LMI systems via RS 422/RS 232”

[9] SICK, “User software, LMS/LMI, Laser Measurement System”

Others

[10] Robosoft Homepage

 http://www.robosoft.fr/

[11] Cross GCC Web page

http://www.gnu.org/software/gcc/gcc.html

APPENDIX A INRIA Rhone-Alpes

A2

[12] M. Riess, “Qualification d’un télémètre à balayage laser pour la robotique

mobile: Intégration et experimentations” (Study of Functions of a Laser

Scanner for Mobile Robots: Experiments and Implementations)

APPENDIX A INRIA Rhone-Alpes

A3

APPENDIX A

Telegram Number Description

0x10 Initialisation and reset of LMS

0x20 Select/Change of LMS operating mode

0x30 Request for measured values

0x31 Request for sensor status

0x32 Request for error telegram

0x36 Request for averaged measured values

0x37 Request for partitioned measured values

0x3A Request for LMS type

0x3B Change of LMS variant

0x3F Request for averaged partitioned measured values

0x40 Configuration of LMS capture fields

0x41 Change of active field group

0x45 Request for configured field

0x74 Read LMS configuration

0x76 Request for measured values in cartesian coordinates

0x77 Define LMS-2xx-xxx06 configuration

Table A1 : Telegram List for Data Exchange from Host to

LMS

APPENDIX A INRIA Rhone-Alpes

A4

Telegram Number Description

0x90 Message sent by LMS after Power On

0x91 Confirmation of software reset telegram

0x92 Not acknowledged, NACK (for invalid commands)

0xA0 Response to change of operating mode

0xB0 Response to request of measured values

0xB1 LMS sensor status

0xB2 Error message/test message

0xB6 Send averaged measured values

0xB7 Send partitioned measured values

0xBA Information on LMS type

0xBB Response to change of LMS variant

0xBF Send averaged partitioned measured values

0xC0 Response to field configuration

0xC1 Change active field group

0xC5 Configuration data for programmed fields

0xF4 Current LMS configuration

0xF6 Response to request for measured values in cartesian

coordinates

0xF7 Response to definition of LMS-2xx-xx06 configurartion

Table A2 : Telegram List for Data Exchange from LMS to

Host

B1

APPENDIX B

Initial Set-Up Test Program provided by Robosoft

/** */
/* Test.C :Test de l'ensemble TPU, PWM, etc... */
/* channel number to test (0..3); the procedure will measure an average on */
/* the channel. (Set with nMoy) */
/*-- */
/* Version: 1.00, 22/10/1999 */
/*-- */

void InterruptHandlerCAN0(void)
{
}

void InterruptHandlerCAN1(void)
{
}

void InterruptHandlerSPI(void)
{
}

void InterruptHandler2(void)
{
}
void InterruptHandler6(void)
{
}

void InterruptHandler7(void)
{
}

void InterruptHandlerPIT(void)
{
/* Blink the LED as SetLED will return the previous LED state */
 SetLED(!(SetLED(0)));
}

/*-- */
/* Interrupt handler reserved for EXTERNAL IRQ lines */
/*-- */

void InterruptHandlerIRQ0(void)
{
}

B2

void InterruptHandlerIRQ1(void)
{
}

void InterruptHandlerIRQ2(void)
{
}

void InterruptHandlerIRQ3(void)
{
}

void InterruptHandlerIRQ4(void)
{
}

void InterruptHandlerIRQ5(void)
{
}

void InterruptHandlerIRQ6(void)
{
}

void InterruptHandlerIRQ7(void)
{
}

/*-- */
/* UART Routine : To put a string of char via UART */
/*-- */

/* Error, the combination Parity + nBit + nStop is not equal to 9 or 10 */
/* (10 and 11 bit frame with Start bit) */
#define err_UARTFrame -1
#define err_UART -2 /* Error UART number must be 0 or 1 */
#define err_UARTNoChar -1 /* NO Char present in the buffer */

int UARTPutString(int UartNb, char *St)
{
 int Result = 0;
 while ((St[0] != 0) && (Result == 0)) {
 Result = UARTPutChar(UartNb, St[0]);
 St++;
 }
 return (Result);
}

B3

/*-- */
/* LCD Routine : To display a string of char on LCD screen */
/*-- */
int LCDPutString(char *St)
{
 int Result = 0;
 while ((St[0] != 0) && (Result == 0)) {
 Result = LCDPutChar(St[0]);
 St++;
 }
 return (Result);
}

/*-- */
/* LCD Command: see documentation of HDD44780 */
/*-- */

#define lcd_Clear 0x01
#define lcd_CursorHome 0x02
#define lcd_SetAddress 0x80
#define lcd_SetAddrL1Home 0x80
#define lcd_SetAddrL2Home 0xC0
#define err_ErrorLCD -1
/* Error returned when busy flag is ALWAYS set */

/*-- */
/* ADC channel assignment: see schematic for more detail */
/*-- */

#define adc_VAxe1 8
#define adc_VAxe2 9
#define adc_VAxe3 10
#define adc_VAxe4 11
#define adc_Temperature1 12
#define adc_Temperature2 13
#define adc_Temperature3 14
#define adc_Temperature4 15

/*-- */

#define BufSize 16 /* Buffer Size */
#define nMoy 64 /* Average number */

int main()
{
 char Buffer[BufSize]; /* For RX */
 char Ch;
 char St[31];

B4

 int VMoy[nMoy];
 int Val, Value;
 int I, J;
 int chAdc;
 int axis;
 int EncVal;
 short int pwmcmd = 0;
 int direc;

 ADCInit();
 LCDInit();
 TPU3Init();
 PWMInit();
 // InitInterrupt(0x800);

 UARTInit(0, 9600, 8, 1, 0, &Buffer, BufSize);
 UARTPutString(0, " \n\rUART 9600 Baud, ADC Chain calibration by Robosoft SA");

 LCDPutString("PoKkIaM & MpC555!");

 chAdc = 0;

 for (I = 0; I < nMoy; I++) {
 VMoy[I] = 0;
 }
 Value = 0;

 I = 1;

 while (1) {

 DACWrite(0, I);
 DACWrite(3, (-I & 0xFFF));
 DACWrite(1, 0x0400);
 I = I + 10;
 I = I & 0xFFF;

 ADCRead(chAdc + adc_VAxe1, &Val);

 Val = Val - 512;
 Value = Value - VMoy[nMoy - 1];

 for (J = nMoy - 1; J > 0; J--) {
 VMoy[J] = VMoy[J - 1];
 }

 VMoy[0] = Val;
 Value = Value + VMoy[0];

 Val = Value / nMoy;

B5

 if (UARTGetChar(0, &Ch) != err_UARTNoChar) {
 if (Ch == '+')
 POTSet(chAdc, +1);
 if (Ch == '-')
 POTSet(chAdc, -1);
 UARTPutChar(0, Ch);
 }
 direc = 0x0F;
 EncRead(0, &EncVal);

 if (EncVal != 0)
 UARTPutChar(0,'X');
 if (UARTGetChar(0, &Ch) != err_UARTNoChar) {
 if (Ch == '1')
 pwmcmd++;
 if (Ch == '2')
 pwmcmd--;
 if (Ch == 'd')
 direc = ~direc;
 WritePWMIO(direc);
 UARTPutChar(0, Ch);
 PWMWrite(0, &pwmcmd);
 }
 }
 return 0;
}

C1

APPENDIX C

Serial Interface Test Program

/** */
/* Test_Serial.c : UART Interface Test Platform */
/* Author : Tan Pok Kiam, Moyens Robotique */
/* INRIA Rhone-Alpes */
/* To test send request, receive response & determine response byte position */
/** */

#include <math.h>
#define BufSize 128

int UARTPutString(int UartNb, char *St)
{
 int Result = 0;
 while ((St[0] != 0) && (Result == 0)) {
 Result = UARTPutChar(UartNb, St[0]);
 St++;
 }
 return (Result);
}

int LCDPutString(char *St)
{
 int Result = 0;
 while ((St[0] != 0) && (Result == 0)) {
 Result = LCDPutChar(St[0]);
 St++;
 }
 return (Result);
}

int main () {
 char Buffer[BufSize];
 char c = 0;
 double d;
 int i,res;
 unsigned char init [7] = {0x02,0x00,0x01,0x00,0x10,0x00,0x00}; /* Test Request */

 UARTInit(0, 19200, 8, 1, 0, &Buffer, BufSize);
 LCDInit();
 LCDPutString("Part1 OK"); /* MPC555 UART Initialisation OK */
 for(i=0;i<10000;i++)
 d = cos(d);

 LCDInit();
 for (i=0; i<16; i++)
 {
 res = UARTPutChar (0, init [i]);
 if (res != 0)
 {
 LCDPutString("Request ERROR");
 }
 };

 LCDInit();
 LCDPutString("Part2 OK"); /* Test Request Send Successful */

C2

 for(i=0;i<10000;i++)
 d = cos(d);

 LCDInit();
 for (i=0; i<10; i++)
 {
 LCDPutChar('-');
 res = UARTGetWaitChar(0, &c); /* Receive Test Response */
 if (res != 0)
 {
 LCDPutString("Receive ERROR");
 }
 LCDPutChar (c);
 }
 LCDInit();
 LCDPutString("Part 3 OK"); /* Message Receive Successful */
 for(i=0;i<10000;i++)
 d = cos(d);
}

D1

APPENDIX D

Completed Program for Serial Interfacing MPC555 and SICK LMS

/** */
/*::::::::::::::::SERIAL INTERFACE BETWEEN MPC555 & SICK LMS::::::::::::::::::::*/
/*::::::::::::::::::::::::::::::::FOR REAL-TIME DATA TRANSFER:::::::::::::::::::::::::::::::::: */
/*:::Tested At 19200 Bauds:: :: */
/* Filename : Serial1.c */
/* Author : Tan Pok Kiam, Moyens Robotique, INRIA Rhone-Alpes */
/* Created : 04/2001 */
/* */
/** */

#include <math.h>
#define BufSize 500
#define Max_Length 1000

int i,res;
char msg[Max_Length];
char data[Max_Length];
unsigned char CrcL,CrcH;
unsigned char LenL,LenH;
unsigned int Len,Crc_Create_Send;

/** */
/* UARTPutString : To send a string of char using MPC555 UART */
/** */

int UARTPutString(int UartNb, char *St)
{
 int Result = 0;
 while ((St[0] != 0) && (Result == 0))
 {
 Result = UARTPutChar(UartNb, St[0]);
 St++;
 }
 return (Result);
}

/** */
/* LCDPutString : To send a string of char to LCD screen of MPC555 board */
/** */

int LCDPutString(char *St)
{
 int Result = 0;
 while ((St[0] != 0) && (Result == 0))
 {
 Result = LCDPutChar(St[0]);
 St++;
 }
 return (Result);
}

/** */
/* LCDClear : Clear LCDScreen (Modification Required) */
/** */

D2

void LCDClear()
{
 char c = 0;
 while(c != 4)
 {
 UARTGetWaitChar(1,&c);
 UARTPutChar(1,c);
 }
 LCDInit();
 LCDPutString(" ");
 LCDInit();
}

/** */
/* SICKCreateCRC : Create CRC16 CHECKSUM for response msg from LMS */
/** */

#define CRC16_GEN_POL 0x8005
#define MKSHORT(a,b) ((unsigned short)(a)|((unsigned short)(b)<<8))

unsigned short SICKCreateCRC(unsigned char *CommData,unsigned int uLen)
{
 unsigned short uCrc16;
 unsigned char abData[2];

 uCrc16 = 0;
 abData[0] = 0;
 while (uLen--)
 {
 abData[1] = abData[0];
 abData[0] = *CommData++;
 if(uCrc16 & 0x8000)
{
 uCrc16 == (uCrc16 & 0x7fff)<<1;
 uCrc16 ^= CRC16_GEN_POL;
 }
 else
 {
 uCrc16 <<= 1;
 }
 uCrc16 ^= MKSHORT (abData[0],abData[1]);
 }
 return(uCrc16);
}

/** */
/* SICK_CRC_Check : CRC checking function for responses from SICK */
/** */

int SICK_CRC_Check()
{
 unsigned int Crc_Create,Crc_Recvd;

 Crc_Create = SICKCreateCRC(&msg[0],(Len+4));// Create CRC for msg from STX - Status
 Crc_Recvd = CrcL + (CrcH*256);
 if (Crc_Recvd == Crc_Create)
 {
 LCDPutString("CRC_Check Correct");
 LCDClear();
 return 0;

D3

 }
 else
 {
 LCDPutString("CRC_Check ERROR!");
 LCDClear();
 return 1;
 }
}

/** */
/* SICKInit : SICK LMS Initialisation. Change to "installation mode". */
/* Default Password = SICK_LMS */
/* 20H--Select/change operating mode. */
/** */

int SICKInit()
{
 for(i=0;i<16;i++)
 {
 unsigned char init [16] = {0x02,0x01,0x0A,0x00,0x20,0x00,0x53,0x49,0x43,

 0x4B,0x5F,0x4C,0x4D,0x53};
 Crc_Create_Send = SICKCreateCRC(&init[0],(14));
 init[14] = (unsigned char)(Crc_Create_Send & 0xFF);
 init[15] = (unsigned char)(Crc_Create_Send >> 8);
 res=UARTPutChar(0,init[i]);
 if (res == 0)
 {
 LCDPutString("Msg Sent to SICK");
 LCDClear();
 }
 else
 {
 LCDPutString("Msg Send Error");
 }
 }
 return res;
}

/** */
/* SICKInit2: SICK LMS Command String2. Change baud rate to 19200 Baud. */
/** */

int SICKInit2()
{
 for(i=0;i<8;i++)
 {
 unsigned char init2 [8] = {0x02,0x01,0x02,0x00,0x20,0x41};
 Crc_Create_Send = SICKCreateCRC(&init2[0],(6));
 init2[6] = (unsigned char)(Crc_Create_Send & 0xFF);
 init2[7] = (unsigned char)(Crc_Create_Send >> 8);
 res=UARTPutChar(0,init2[i]);
 if(res == 0)
 {
 LCDPutString("Msg Sent to SICK");
 LCDClear();
 }
 else
 {
 LCDPutString("Msg Send Error");
 }

D4

 }
 return 0;
}

/** */
/* SICKInit3: SICK LMS Command String3. Request LMS to send all scan */
/* continuously. */
/** */

int SICKInit3()
{
 for(i=0;i<8;i++)
 {
 unsigned char init3 [8] = {0x02,0x01,0x02,0x00,0x20,0x24};
 Crc_Create_Send = SICKCreateCRC(&init3[0],(6));
 init3[6] = (unsigned char)(Crc_Create_Send & 0xFF);
 init3[7] = (unsigned char)(Crc_Create_Send >> 8);
 res=UARTPutChar(0,init3[i]);
 if(res == 0)
 {
 LCDPutString("Msg Sent to SICK");
 LCDClear();
 }
 else
 {
 LCDPutString("Msg Send Error");
 }
 }
 return 0;
}

/** */
/* SICKChkACK: To check the 1st byte of the response message for ACK */
/** */

#define ACK 0x06
#define NAK 0x15

int SICKChkACK()
{
 unsigned char ack;

 ack = 0x00;
 UARTGetChar(0,&msg[0]);
 ack = msg[0];
 while ((ack != ACK) && (ack != NAK))
 {
 LCDPutString("ChkACK Err:XX");
 LCDClear();
 return 1;
 }
 if (ack == NAK)
 {
 LCDPutString("ChkACK Err:NAK");
 LCDClear();
 }
 else //ack == ACK
 {
 msg[0] = 0;
 return 0;

D5

 }
}

/** */
/* SICKGetMsg: To get the entire response message from LMS */
/** */

void SICKGetMsg()
{
 UARTGetChar(0,&msg[0]); // STX
 UARTGetChar(0,&msg[1]); // ADR
 UARTGetChar(0,&msg[2]); // LENL
 UARTGetChar(0,&msg[3]); // LENH

 LenL,LenH,Len = 0x00;
 LenL = msg[2];
 LenH = msg[3];
 Len = LenL+(LenH*256); // Convert HEX to DEC
 for(i=0;i<Len+2;i++) // CMD+(N x Data)+Status+CRCL+CRCH
 UARTGetChar(0,&msg[i+4]);
 CrcL = msg[Len+5];
 CrcH = msg[Len+6];
}

/** */
/* SICKGetData: To get the useful scan data values (361 values) */
/** */

#define STX 0x02

int SICKGetData ()
{

 UARTGetChar(0,&data[0]); // STX
 if(data[0] != STX)
 {
 LCDPutString("GetData Err:STX");
 LCDClear();
 UARTClose(0);
 }
 UARTGetChar(0,&data[1]); // ADR
 UARTGetChar(0,&data[2]); // LENL
 UARTGetChar(0,&data[3]); // LENH
 if((data[2] != 0xD6) && (data[3] != 0x02))
 {
 LCDPutString("GetData Err:Len");
 LCDClear();
 UARTClose(0);
 }
 LenL,LenH,Len = 0x00;
 LenL = data[2];
 LenH = data[3];
 Len = LenL+(LenH*256);
 UARTGetChar(0,&data[4]); // CMD
 for(i=0;i<Len-1;i++)
 UARTGetChar(0,&data[i+5]); // data
 UARTGetChar(0,&data[Len+5]);
 UARTGetChar(0,&data[Len+6]);
 CrcL = data[Len+5];

D6

 CrcH = data[Len+6];
}

/** */
/*-- */
/* Start of main program */
/*-- */
/** */

int main ()
{
 char Buffer[BufSize];
 int Response;

 UARTInit(1,19200,8,1,0,&Buffer,BufSize);
 /* For communication with another terminal to show certain responses */

 Response = UARTInit(0, 19200, 8, 1, 0, &Buffer, BufSize);
 if (Response == 0)
 {
 LCDInit();
 LCDPutString("UARTInit OK");
 UARTPutString(1,"\n\rHello, UART Serial Interface PERFECT!");
 UARTPutString(1,"\n\rPress Ctrl-D to continue");
 LCDClear();
 LCDPutString("Start SICKInit");
 LCDClear();
 }
 else
 {
 LCDInit();
 LCDPutString("UARTInit Error");
 UARTClose(0);
 }

 /********** Commence SICK Initialisation and Recv Data *************** */
 if(!SICKInit())
 {
 LCDPutString("Part1 ok"); //Trial For FALCO
 if(!SICKChkACK());
 SICKGetMsg();
 LCDPutString("Part2 ok"); //Trial For FALCO

 if(SICK_CRC_Check() == 0) //CRC16 Check
 {
 LCDPutString("Rep1 Rcvd OK");
 LCDClear();
 if(!SICKInit2());
 if(!SICKChkACK());
 SICKGetMsg();
 if(SICK_CRC_Check() == 0)
 {
 LCDPutString("Rep2 Rcvd OK");
 LCDClear();
 if(!SICKInit3());
 if(!SICKChkACK());
 SICKGetMsg();
 SICK_CRC_Check();
 if(SICK_CRC_Check() == 0)
 {

D7

 LCDPutString("Rep3 Rcvd OK");
 LCDClear();
 SICKGetData();
 if(SICK_CRC_Check() == 0)
 {
 LCDPutString("Scan Values Rcvd");
 LCDClear();
 }
 else
 {
 LCDPutString("Val rcvd error");
 LCDClear();
 UARTClose(0);
 }
 }
 else
 {
 LCDPutString("Rep3 Error!");
 LCDClear();
 UARTClose(0);
 }
 }
 else
 {
 LCDPutString("Rep2 Error!");
 LCDClear();
 UARTClose(0);
 }
 }
 else
 {
 LCDPutString("Rep1 Error!");
 LCDClear();
 UARTClose(0);
 }
 }
}

D8

APPENDIX E

The Makefile

**
(c) ROBOSOFT (pierre@robosoft.fr)

This is a Makefile used to compile programs for MPC555 targets.
Modified : Tan Pok Kiam, Moyens Robotique, INRIA Rhone-Alpes

SHELL = /bin/sh
.SUFFIXES = .s .c .o

RM = rm –f
ROBOTIQUE=/local/projets/robotique
Specify MPC555 cross GCC compiler.
#XGCC = ppc-elf32-gcc
XGCC = ${ROBOTIQUE}/bin/linux/ppc-elf32-gcc

Set libraries path and the list of libraries to be passed to the linker.
LIBDIR = -L${ROBOTIQUE}/MPC555/lib
#LIBDIR = -L/home/ciney/lydoire/local/lib
LIB = -lm -lc -lnode555

Linker options passed from compiler to linker.
LDSCRIPT = script.ld
LDFLAGS = -Wl,-T,$(LDSCRIP T),-Map,$@.map

Hardware configurations. Target related options.
CFLAGS = -mpowerpc -mhard-float -gdwarf

SRC (source filess) and OBJ (object files) variables
list the files needed to generate the `main.elf' executive.
SRC = Serial1.c

TMP = $(SRC:.c=.o)
OBJ = $(TMP:.s=.o)

Makefile commands.
all :
 make Serial1
 make download

%.o : %.c
 $(XGCC) -O2 -c $< -o $@

%.o : %.s
 $(XGCC) -O2 -c $< -o $@

Serial1 : $(OBJ) crt0.o $(LDSCRIPT)
 $(XGCC) $(LDFLAGS) $(CFLAGS) $(OBJ) -o $@ $(LIBDIR) $(LIB)

clean :
 $(RM) *.o Serial1 Serial1.map Serial1.bin *~

download :
 ${ROBOTIQUE}/bin/linux/elf2sdxbin Serial1 Serial1.bin
 dwnbin testall.bin 16404

D9

D10

TABLE OF CONTENTS

 Page

ABSTRACT i

INTRODUCTION ii

ACKNOWLEDGEMENT iv

LIST OF TABLES v

LIST OF FIGURES vi

LIST OF PHOTOS vii

CHAPTER I 1

 INTRODUCTION TO HARDWARE 1

1.1 Cycab 1

1.1.1 System Description and Specifications 1

1.1.2 Mechanics and Electronics New Cycab 4

1.1.3 Goals of Cycab 8

1.1.3.1 Increase Safety of Road Transportation 8

1.1.3.2 Minimisation of Energy Consumption 8

1.1.3.3 Minimisation of Pollutions and Nuisances 9

1.1.3.4 A More Pleasant Living Environment 9

1.2 Motorola MPC555 9

 1.2.1 Microprocessor Description 10

 1.2.2 Features 10

 1.2.3 Queued Serial Multi-Channel Module (QSMCM) 11

 1.2.4 Two CAN 2.0B Controlle r Modules (TouCANs) 12

1.3 SICK LMS (Laser Measurement System) 15

 1.3.1 System Description 15

 1.3.2 Operating Principle 16

 1.3.3 Specifications (LMS 291-S05) 18

 1.3.4 Features 19

D11

 1.3.5 Possible Applications for SICK LMS 19

 1.3.6 LMI 400 20

CHAPTER II 22

 IMPLEMENTATION OF REAL-TIME SERIAL

INTERFACE 22
 2.1 Real-Time Serial Interface 22

 2.1.1 Serial Interface 23
 2.1.2 Serial Format 23

 2.2 MPC555 Control Board 25

 2.2.1 UART Serial Interface Functions in C Language 25

 2.2.2 MPC555 Interface Ports 26

2.3 SICK LMS 29

2.3.1 LMS Telegram Structure 29

2.3.2 Organisation of Telegrams 31

2.3.3 Structure of LMS Status Byte 32

2.3.4 Example of Telegram Transfer 33

2.3.4.1 Command sent from MPC555(Host) to LMS 33

2.3.4.2 Interpretation of Command Telegram 33

2.3.4.3 Response sent from LMS to MPC555(Host) 34

2.3.4.4 Interpretation of Response Telegram 34

2.3.5 CRC16 Checksum and Other Verification Methods 35

2.3.6 The Makefile 36

2.4 The Simulated Environment 38

2.5 The Flow of Program 39

2.5.1 Data Exchange between SICK LMS and MPC555 39

2.5.2 Main Program Flow 42

D12

CHAPTER III 47

 PROCESSING OF SCAN DATA AND

APPLICATION PROGRAM 47
3.1 Obstacle Avoidance 47

3.1.1 LMS Programmable Scanning Field 47

3.1.2 Implementation of Obstacle Avoidance 48

3.2 Car Following 49

3.2.1 Extraction and Processing of Data 49

3.2.2 Detection of Reflector Target 50

3.2.3 Mathematical Algorithm 51

CHAPTER IV 53

 COMMENTS AND DISCUSSIONS 53
4.1 Limitations of Cycab 53

4.2 Processing Time 54

4.3 Addition of a User Menu 55

4.4 Minor Problems Encountered 55

CHAPTER V 56

 SUMMARY AND CONCLUSION 56

REFERENCES 58

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

D13

