
“Integration of a GPS sensor board for a drone
localization application”

second year internship report
14 June 2011 - 19 August 2011 (10 weeks)

Maxime France-Pillois

Internship supervisors : Soraya Arias and Roger Pissard-Gibollet

INRIA Rhône-Alpes
Service Expérimentation et Développement
655 avenue de l’Europe
38330 Monbonnot Saint Martin

August 19, 2011

1

Acknowledgment
First of all, I would to thank the “Service Expérimentation et Développement” of INRIA Grenoble

for their reception in the service. They allow me to have a nice internship in a welcoming team.
I specially thanks Guillaume Roche, Christophe Braillon and Clement Burin des Roziers which

helped me to overcome some software or hardware problems and which were on hand when I faced
issues.

I wish express my gratitude to Roger Pissard-Gillobet and Soraya Arias for allowing me to take
part in this captivating internship. Thanks to them, for following my work and for helping me all
along this period. Without their devotion I was not able to reach the same internship results. Not
forgetting their valuable help during the writing of this report. At last, I would to thank them for
the confidence which gave me.

Finally, I wish thank my schools Ensimag and Phelma for giving me the opportunity to discover
the software engineer work during internship period. And I thank the internship department of
Ensimag and Claudie Marchand (SED) to carry out the administrative tasks, in particular the
internship agreement, allowing me to performed this internship.

Contents
I Introduction 3

II Internship environment 4

IIIInternship work presentation 5
III.1 Work overview . 5
III.2 Existing work . 7
III.3 Work choices . 8

IV Internship work description 9
IV.1 Overview . 9

IV.1.1 GPS driver architecture . 9
IV.1.2 Applicative part architecture . 9

IV.2 Software implementation . 10
IV.2.1 GPS driver implementation . 10
IV.2.2 The application part . 14

V Validations tests and results 16
V.1 Validations tests . 16

V.1.1 GPS accuracy characterization and driver validation 16
V.1.2 Validation of the wireless communication . 18
V.1.3 Internship results . 18

VIBalance sheet 21

VIIConclusion 22

A Appendix 23
A.1 Inter-Integrated Circuit (i2c) . 23
A.2 Time Division Multiple Access (TDMA) . 25
A.3 Daughter board overview . 26
A.4 Forward-looking Gantt diagram . 27
A.5 Realization Gantt diagram . 28
A.6 Overview of software realizations . 29

B Bibliography 31

I Introduction 3

I Introduction
As part of the 2nd year internship of Ensimag school, I took part in an INRIA project within the

“Service Expérimentation et Développement” of the Grenoble lab.

So this 10 weeks internship takes place in an engineers service in charge to help research project
to set up experimentation platforms or to develop source code.

In this context, my mission aims to provide support to a doctoral student working in the NeCS
(Networked Controlled Systems) research team. To validate her control algorithms of robots fleet she
needs an experimentation platform. Due to its low cost, the selected robot was the AR.Drone Parrot.
But these algorithms need absolute positions of the robot whereas the AR.Drone Parrot provides
only relative positioning information. Thus, to set up an adapted physical platform with this kind
of robot, the absolute position of the drone have to be provide. To reach this goal, I worked on the
integration of two additional sensors on the drone : a GPS 1 and an accelerometer. With this two
sensors, the absolute position of the robot can be gotten and so, the platform can fulfill the doctoral
student expectations.

Actually, this internship subject was composed of two main parts : the first one was the writing
and the testing of a GPS driver dedicated to the chip available in INRIA lab. And the second part
was the carrying out of wireless driver communication based on a real-time operating system 2.

This report will present briefly the work carried out during this internship and the solutions
implemented to fulfill the lab expectations. To do this, this document is divided in six main parts.
In a first time, I present the environment of this internship : the company, the work organization,
etc. Secondly, I introduce my internship subject and the expectations of my supervisors. Then, I
present the choices made and the software architecture set up to fulfill the internship aim. Next,
I describe more precisely the work I had done and the implantation problems faced. After that, I
tackle to the validation tests issues and I summarize the internship results. And at last, I conclude
with the balance of acquired experiences during this 10 weeks.

1Global Positioning System (GPS) is a space-based global navigation satellite system that provides location and
time information in real-time.

2see Glossary

II Internship environment 4

II Internship environment
My internship took place at the “Institut National de Recherche en Informatique et en Automa-

tique” of Monbonnot(38), most precisely in the “Service Expérimentation et Développement”. INRIA
is a public research laboratory specialized in computer science. Set up in 1967, INRIA is nowadays
divided to 8 labs located all over France (Paris, Lille, Bordeaux, Grenoble, Nancy, Rennes, Saclay
and Sophia Antipolis) hiring 3350 scientific people (1300 researchers, 1200 doctoral students and 250
post-doctoral students). I did my internship in the lab of Grenoble which hired 650 persons divided
in 34 research projects. The lab of Grenoble is promoting the work with other public labs of the
area like the “Laboratoire d’Informatique de Grenoble” or the “ laboratoire Grenoble Images Parole
Signal Automatique”. Some research fields studied in INRIA of Grenoble are for example :

• software programming : especially in the software reliability.
• modeling and simulating : in biology field in particular, with modeling on cells life.
• human machine interfacing with the interactive 3D TV or the developing of smart cars for
example.

More specifically, for this internship, I joined the “Service Expérimentation et Développement”,
SED. This service was created to fulfill three main goals :

• to maintain a network of expertise to disseminate best practices of software development and
use of community tools within project teams

• to set up, develop and maintain the experimental platforms with project teams
• to take part in software development within project teams

During this internship, I was supervised by two members of SED department : Soraya Arias and
Roger Pissard-Gibollet. Both are research engineers specialized in Real-Time software and robotics.
Soraya Arias, is being in charge of the drones use in INRIA, followed my work very closely. Roger
Pissard-Gibollet, the head of the department, had more a decision-making role and he validated our
choices for the project.

In the SED department, the schedule of interns is not strictly defined. All interns have to do 35
hours per week, but can organized their work as they want. Personally, I start working around 9 am
and stop around 6 pm. Moreover, to facilitate the monitoring of my work, I write, each week, and
publish on the SED-wiki Web site, a summary of the work carried out during the week. Thus, my
supervisors or other SED people were able to know my progress.

To be able to organize easily my work, at the beginning of my internship, my supervisors provided
me a schedule of tasks I had to do during this period. This schedule allowed me to see the work
breaking structure and to understand easily the aim of my work. You can find this forward-looking
schedule, represented as a Gantt diagram, in appendix A.4.

III Internship work presentation 5

III Internship work presentation

III.1 Work overview

My internship subject aims to integrate a GPS and accelerometer sensor node within a system
controlling a drone 3 robot.

This work should allow INRIA’s researchers to develop easily drone positioning based algorithms.
Indeed, presently, drones provide only relative information of his motions. The reachable information
for users are relative orientations and velocities. But, algorithms designed need absolute positions
of the robot. That’s why, the integration of additional sensors is required. These sensors enable to
get, in “real-time”, the absolute position of the drone. Therefore, a positioning control of drones is
feasible. Indeed, at the end of my internship, the system I am working on, should send positioning
GPS frames and accelerometer frames in “real-time”. Thus, researchers could be get the absolute
position of robots and check their algorithms on a real platform thanks to drones integrating these
sensors.
Note : Due to project hardware limitations, position data are not provided in strict real-time. A la-
tency delay, of few milliseconds, is existing between the data recovery by users and the actual position
of the drone. These limitations will be explained in the section V.

The whole required system is split in two different parts as described in the following diagram 1.

1. One part, is built-in on the drone. This is the sensor part where drone motions and positions
are estimated. This part is called the node in this report.

2. The other part is called the sink. It is linked to a computer which drives the drone fleet.

The two parts have to communicate together. The drones are driven by the computer via a Wifi
connection link and the system I designed communicates via radio frequency. This system can not
use the same medium link as the drone because the drone mother board is protected and it is not
possible to connect the node part directly to the drone system and used the Wifi link to send node
data.

On the diagram presented in figure 1, you can see an overview of the entire project. The right part
of the diagram is the mobile part composed of a drone and the additional sensors. The left part, is in
charge of drive the drone and collect information. The sink gets the absolute positioning information
provided by sensors (number 1 on the diagram). The computer has to get relative information sent
by the drone (number 2) and to recover, through a serial link, the absolute data provided by the sink.
With these two kind of data, the computer compares the real trajectory of the drone to the initial
wanted trajectory. The computer computes the errors done, and sends a new relative command of
motors velocities to correct that, and reach the expected position or trajectory.

3a drone is a flying system needing no human pilot

III.1 Work overview 6

Figure 1: Internship subject overview.

Regarding the hardware support for my project, INRIA has already a large operational sensors
network based on electronic boards called WSN430 board. These boards are mainly composed of
two Texas Instrument chips : a Micro-controller 4 “MSP430” and a wireless radio chip “CC1100”.
This large scale sensors network is called “Senslab”. This is a amount of 1024 environmental sensors
nodes distributed in 4 INRIA sites (Rennes, Lille, Strasbourg and Grenoble). Each sensors node is
made up of 2 boards : a WSN430 board [2], also called the mother board, and a daughter board with
specifics sensors build-in. There are different kind of daughter board with different kind of sensors
like temperature sensor, humidity sensor,...
To keep this standard, I had to work on this model. Actually, the two parts of the project will be
based on this board. The node part will be composed of a WSN430 board and a daughter board
made up of two sensors : a GPS sensor (lea-5H) [1] and a 3-axis accelerometer sensor (lis3lv02dq).
An overview of the daughter board is available in appendix A.3. And the sink part will be only
composed of a mother board WSN430 to be able to receive radio frequency frames.

To summarize, the work I performed has been divided in two main stages :

• The first one is relative to the GPS sensor : implement a dedicated Driver5 in C language and
perform tests to get the characteristics (accuracy, errors, ...) of this device. The driver has to
meet a specific API 6 to be compliant with the others INRIA sensors drivers already built up,
and to simplify the reuse of the GPS device.

• The second one focus on the communication and applicative part : implement a program where
the both data sensors (GPS and accelerometer) are sent periodically to a sink node via a wireless
communication and then these data are available on the sink computer to be integrated in a
high level application.

4a micro-controller is a “small computer” on a single integrated circuit, containing a processor core, memory, and
programmable input/output peripherals like analog-digital converters, serial ports communication,...

5see glossary
6see glossary

III.2 Existing work 7

III.2 Existing work

At the beginning of my internship some works were already developed in the “Service Expéri-
mentation et Développement” of INRIA. INRIA engineers have already designed a set of drivers and
libraries dedicated to the WSN430 board. Theses programs provide features of the board including
processor (MSP430) facilities, wireless communication module, drivers for timers 7, UART 8 or i2c
communication 9 [4]. These drivers have been already checked and used in many other projects,
especially the “Senslab” project.

As for the GPS module, using the µ-blox component, a driver has already been implemented.
But it was not suitable as it has been designed for a different hardware target board and a different
processor. The previous project using the GPS module was focused on energy saving, whereas the
actual project is interested mainly in reactivity. Thus, the GPS configuration has to be different.
Moreover, the driver that I have to implement needs to be as general as possible to be used in different
cases of study. Nevertheless, the GPS modules are the same, so I could learn from previous work
how to handle the GPS module features.

The driver of the accelerometer sensor has already been developed. It has already been checked
and used in an human body motion analysing application. So concerning the accelerometer sensor,
I only have to focus on how to use the driver to retrieve accelerometer data on the application part
programs.

Regarding the wireless communication, the hardware board (WSN430) uses a built-in radio chip
(cc1100). So the easiest to set up the wireless communication between the sink and the node parts is
to go through this chip to send frames via a radio link. An other way to communicate could be to send
data to another board which should be in charge of the wireless communication, but this solution
being more expensive in resources and time consuming we give up quickly. Different standards of
communication have already been designed and implemented for the WSN430 board built-in radio
chip, so the use of another board type would imply more development time for a feature already
developed.
Three standards of communication have already been released : the TDMA 10 [3], the CSMA 11 and
a homemade standard : the XMAC 12.

Concerning the drone and how to control it, programs, using the Parrot SDK (Software Devel-
opment Kit) APIs, have been implemented by the SED engineers. I have to integrate my work to
these programs to check the validity of the entire system.

As for the hardware daughter board, made up of GPS and accelerometer sensors, it has been
designed but no functional tests have been performed on it before my internship work. So, I need to
perform these tests myself concurrently with the software development.

7a timer is a counter module allowing to count precisely a predefined time slot. This is a essential feature in computer
science to measure time.

8UART or Universal Asynchronous Receiver Transmitter is a serial communication module.
9i2c or Inter Integrated Circuit is a serial synchronous communication bus made of only three wires, used to

communicated between two or more integrated circuits or boards in our case. See appendix A.1 for more details
10Time Division Multiple Access (TDMA) is a channel access method for shared medium networks. It allows

several users to share the same frequency channel by dividing the signal into different time slots. See appendix A.2 for
more details.

11see Glossary
12The XMAC communication protocol is a INRIA home-made communication protocol designed especially for low-

power consumption. This kind of communication is suited for low traffic network only.

III.3 Work choices 8

III.3 Work choices

At the beginning of the internship, the work specifications have been strictly defined by my
supervisors. The hardware boards and components are imposed as the main steps of the software
implementation.

Regarding the wireless communication protocol between the drone fleet and the sink board I use
the TDMA standard. This standard is the best suited for multiple nodes communication.

Concerning the GPS driver implementation, the critical point was the data exchange between
the micro-controller MSP430, on the WSN430 mother board, and the GPS module located on the
daughter board. To set up this data exchange three different communication buses can be used : the
i2c 13 bus, the serial bus (UART) and the SPI bus. For restricted resource reasons, my supervisors
ask me to work on the UART communication. The micro-controller (MSP430) has two ports of
communication but each port accepts only some kinds of communication. As the accelerometer data
are sent via the i2c bus through the first port, the easiest solution to send the the GPS module data
seemed to use the UART, through the second port, to avoid data sending conflict within the two
sensors.
Nevertheless, when working on the wireless communication, I notice that the communication between
the micro-controller MSP430 and the radio chip CC1100 is performed using the SPI bus. This bus
goes through the second communication port as well as the UART communication used to retrieve the
GPS data. So I have to review the previous solution made by my internship supervisors because the
use of the UART bus is severely compromised. The TDMA protocol needs constant synchronization
frames to be operational, so the second communication port (and the SPI) is always busy with TDMA
synchronization frames. So no sharing of this port is possible. Therefore, the UART bus can not
be used as suggested and I have to change the communication between the micro-controller and the
GPS device. The only solution remaining is the i2c bus. Nevertheless, this implies to share this bus
between the accelerometer data and the GPS data. Thus, these data can not be read exactly at the
same time as it should be for an high accuracy localisation and control of the drone. But, as there is
no other way to handle on the same board both wireless communication and sensor data retrieving,
high level algorithms should take into account this characteristic.

Figure 2: Summary of communication buses used between each chip.

13see appendix A.1

IV Internship work description 9

IV Internship work description

IV.1 Overview

An overview of the softwares designed is available in appendix A.6.

IV.1.1 GPS driver architecture

In order to be as general as possible, we decide to design the GPS driver for the two micro-
controllers which should be able to be linked with the GPS module, according with existing boards
in INRIA labs. These boards were the WSN430 board, use in the “Senslab” project and being the
principal target of my work, and the “Marathon des Sables” board. The second one was the board
for which the first GPS driver was designed.

Figure 3: Global architecture of the GPS driver.

As shown at the top of the figure 3, the designed driver has a single API. it is independent of
the targeted board types. To simplify the use of the driver and to meet the standard driver API of
INRIA, a single API was required. Then, below this API, a differentiation is made at compilation
time depending on the targeted board (a dedicated flag is used, see arrow labels on figure 3). This
allows memory space saving, only useful memory is allocated. Moreover, it is not too restrictive for
users as they know at the compilation time what board is targeted. Finally, as shown at the bottom
of the figure 3, in case of the WSN430 board, GPS driver can handle two communication buses to
retrieve the data : the UART and the i2c. The choice is done using a specific compilation flag. As
for the “Marathon des Sables” board only one communication bus is available, i2c bus.

IV.1.2 Applicative part architecture

Concerning the application part, namely the GPS driver use case programs and program using
TDMA communication for sensors data sending, I do not define a proper architecture. Application
programs can be seen as a main function, no peculiar architecture needs to be set up. However, to
allow the periodic reading of GPS frames, I have to add a software over-layer. This is a supplementary
layer on top of the driver API. This layer is explained in subsection IV.2

IV.2 Software implementation 10

IV.2 Software implementation

IV.2.1 GPS driver implementation

To write the GPS driver, I do not need to know all the theory about the Global Positioning
Systems but mostly how the µ-blox GPS module works. I search for the main principles of GPS on
Web and I read the µ-blox GPS data-sheet to understand how the module works. A summary of the
basics information needed to design the driver are the following :

• GPS modules have all the same operating principle.
• Thanks to an antenna the GPS module can receive satellite signals.
• With at least three different satellite information, it is able to compute its current position.
Generally, the position is given with the standard : latitude 14, longitude 15, and altitude.

• The µ-blox GPS module can provide other kind of information related to the position : a 3-D
coordinates x,y,z point relative to the position, the speed vector vx, vy, vz, time from satellite,
...

Concerning the implantation of the driver I design, I organize the implementation in layers sorted
by hardware abstraction. As a result, I divide the driver in two layers where each layer is defined
by a couple of files (the header file.h and the body file.c). The lower layer (files lea5x.h and lea5x.c)
handles the features closest to the hardware. The upper layer (files gps.h and gps.c) is in charge of
the most abstract features of the driver.

The basic features of the driver is to configure a GPS module and to retrieve the GPS data.
These tasks are realized by the upper layer which set up an user-friendly API to manage all the
driver features. To do so, the upper layer needs the lower layer. This one is totally dedicated to the
µ-blox GPS module and to the communication between motherboard and GPS on daughter board.
The GPS module configuration must set the device to an appropriate mode in order to get position
and timestamped data. The principle of the configuration setting is dependant to GPS module used.
In our case, the driver targets a single GPS module, so the configuration mechanism is the same for
any version of the driver whatever the board or the communication medium wanted.

µ-blox GPS module configuration
The configuration of the GPS module is the big part of the driver. As described in subsection III.3,

the device can handle different kind of communication to exchange data : (i2c, UART, SPI and USB).
To be able to manage these communication links the GPS module has to be configured differently.
Generally, communication with most of computing devices is realized writing or reading data in some
specific device registers. But for µ-blox GPS module, the configuration technique is closest to the
network frames processing. Namely, the device is able to receive frames, matching a defined frame
protocol, and computing them to take into account the received data. To set the configuration, the
frame protocol used is a proprietary protocol designed by µ-blox, the device manufacturer. This
protocol is composed of synchronization bytes, followed by a header, then the body of the frame and
at last the check-sum bytes as shown on figure 4.

14the latitude of a location on the Earth is the angular distance of that location south or north of the equator. The
latitude is an angle usually measured in degrees. The equator has a latitude of 0◦, the north pole has a latitude of
90◦north (written 90◦N or +90◦), and the south pole has a latitude of 90◦south (written 90◦S or -90◦).

15the longitude is a geographic coordinate that specifies the east-west position of a point on the Earth surface. It is
an angular measurement, usually expressed in degrees, minutes and seconds like the latitude position. The Greenwich
meridian has the longitude 0◦.

IV.2 Software implementation 11

Figure 4: Example of a µ− blox frame.

As presented on the figure 4 the header is composed of one byte called class and one byte call id.
By analogy, a class can be considered as a memory sector and an id as a register within this memory
sector.

The configuration process is identical for any version of the µ-blox GPS module daughter board.
But the retrieving of GPS frames from daughter board to mother board depends obviously of the
communication bus selected. To ease the readability and to avoid redundancy in code, the routines
in charge of configuring the device produce the related body (header + payload) frame. And another
routine is in charge of the sending of the frame according to the communication bus chosen (it adds
the correct synchronization and check-sum bytes to the body). This way configuration routines can
be used for any GPS module daughter board, and only the sending method depends on the target.
So only the sending function, using communication medium drivers, differs with the board or the
communication protocol targeted.

Reading GPS frames
The µ-blox GPS module can send data according to two different frame protocols :

• the µ− blox protocol already presented in figure 4;
• the NMEA 16 protocol, a standard for GPS.

The big advantage of the µ− blox protocol is that it is a binary protocol, so data encoding is optimal
and the rate can be more important. The NMEA protocol sends ASCII 17 character, using 1 byte
for encoding one digit. For instance, to encode number 200, the NMEA protocol needs 3 bytes while
µ − blox protocol needs only 1 byte). Nevertheless, the NMEA protocol is the standard protocol
independent of the GPS module manufacturer, whereas the µ − blox protocol is a proprietary one
only available for µ-blox modules. The two protocols having their pros and cons, we do not constrain
the choice of the data protocol in the driver. The driver can be used to retrieve encoded data by
both protocols. However, concerning the program designed to be integrated with drone application,
we prefer the µ− blox protocol for its higher rate.

Once GPS data have been retrieved, the next step is the parsing depending on the chosen pro-
tocol. For NMEA frames no computing is required, they can be directly sent to the high level part.
As for µ− blox protocol the parsing process is described below.

16see Glossary
17see Glossary

IV.2 Software implementation 12

Let start with the data retrieving process depending closely of the communication bus. The
implemented driver only handles two bus : the UART and the i2c.

UART communication
When using the UART communication the GPS device sends frames directly on the bus at the

frequency selected during the GPS module configuration. The motherboard has to pick the data on
bus when there are available. The driver part dedicated to the UART bus, is able to detect data on
bus and to raise a software interruption 18 when data are available. Then it is easy to recover GPS
frames : when data are received on the bus a flag is raised (interruption), then the data are read and
stored in a buffer to be parsed afterwards.

The retrieving and parsing of GPS data must be performed periodically. To fulfill this require-
ment I decide to take advantage of the interruption raised by the UART to get the data. However,
an interruption is raised for each byte received, so whether I call the data parsing method at each
interruption the data process is wrong. If the parsing is running while a new data is received, without
specific restriction, the parsing is recalled on the same buffer. To resolve this problem, I set up a
mutual exclusion when calling the parsing function. Namely, the handler can call the data parsing
method only when the first data is received; for the other data being received, the handler only stores
them in the buffer. Meanwhile, the parsing function manages to process every data of the buffer.

Note: the mutual exclusion can be performed easily because the driver is designed for mono-
processor hardware support. Thus, within the interruption handler (which is, initially, executed in a
masked interrupt mode) we can certify that only one execution flow can reach the mutual exclusion
barrier at a time.

i2c communication
When using the i2c bus the GPS module does not send data anymore. It writes the data frames

in an internal buffer, and this is the process interested in the data that needs to retrieve them once
written.

As explained in appendix A.1 the i2c standard works as a master/slaves communication : the
master asks a slave to send data frames on the bus. The slave can not send data on bus without
the master request. In our case, the master is the micro-controller MSP430 on the motherboard and
the slave is the µ-blox GPS module (or the accelerometer module). So the driver (controlled by the
MSP430) must send a request to the GPS device to retrieve a data. The mechanism consisting in
interrogating a device continually to obtain data is called the polling.

Alike the UART solution, a periodic polling of the GPS module must be settled by the driver
to retrieve GPS position information. The easiest solution to get something periodically is to use
timers. A timer is a resource used to count time delay precisely. For the record, drivers managing
the MSP430 timers have designed in SED department and are ready to use. An essential feature of
timers is to raise an interruption at a predetermined moment. The existing timer drivers use this
feature and allow a periodic interruption raising. Thus, to periodically retrieve and parse GPS data
frames, I use timer driver functions to configure the desired period and the handler to be called (to
retrieve and parse data) when an interruption is raised.

The micro-controller (MSP430) has only two timer modules. When the driver is running on
bare machine (without any Operating System 19 there is no problem because the two timers are
available and the periodic polling can be performed with any timer. But, my whole application
needs to be implemented over FreeRTOS (as operating system). And FreeRTOS requires one timer
for task scheduling. Moreover, another timer is required by the TDMA task to synchronize data

18An interrupt is an asynchronous signal indicating the need for attention.
19see Glossary

IV.2 Software implementation 13

between receivers. So I can not use timer for the periodic data polling on i2c bus. According to my
supervisors, we decide to perform the periodic data polling for the i2c in an over-layer part detailed
in paragraph IV.2.2. Thus the driver remains independent of the application constraints but an
over-layer can be called to ease the use of the driver for i2c communication.

Concerning the retrieving of data from i2c bus, I reuse an existing method written in the MSP430
driver set developed by the SED. But I have to modify the bus frequency value. I spend time in this
adaptation because in the end the maximum frequency tolerated by the GPS module is different from
the value given in the constructor data-sheet (in practice the maximum frequency is 70kHz versus
the theoretical 100kHz).

GPS data frames parsing
The data parsing analyzes data frames according to a specific protocol to extract useful information.

As presented in figure 4 a well-formed GPS frame respects a strict byte format. Data parsing analyzes
each byte to determine its nature and to check whether byte order is respected according to the
protocol in use. The parsing function checks the packet length : if the number of payload bytes
is different from the length written in the header, the packet is considered as a mistaken frame.
Nevertheless, to save time, the parsing function designed does not check the frame check-sum. We
suppose that if byte order is respected and packet length is correct, then the frame is valid.

Once verified the packets, data can be analyzed. The GPS module writes frames periodically
even if the GPS position data are not valid. Thus after parsing GPS data frames we have to check
their validity. Generally, within the GPS data a flag is set to validate (or not) the position informa-
tion and whether the position is fixed or not. The parsing function checks this flag before storing
the useful data. For instance latitude and longitude are considered as useful data. Once the data
are stored they are available for high level programs. To ease the use of the driver, I write default
handlers which print data on screen, via an UART communication (the printed data are for example
the latitude and the longitude in degrees, minutes, seconds).

The figure 5 resumes the GPS data frame processing mechanism.

Figure 5: GPS data frame processing mechanism.

To simplify the use of the driver, default settings are set in the GPS initialization routine :

• the protocol is set to : µ− blox protocol
• the update frame rate is set to : 250ms
• the default handler is set to a handler printing most information available on a GPS data frame
(namely : latitude, longitude, x,y,z coordinates and the time)

Of course, users can change these default settings using the appropriate driver configuration functions.

IV.2 Software implementation 14

IV.2.2 The application part

Figure 6: Application part overview.

I work on three different points :

• the implementation of the accelerometer sensor device;
• the discovery and understanding of FreeRTOS features (like the tasks scheduler, ...);
• the use of the TDMA wireless communication way. This step needed most care due to com-
patibility problems.

Accelerometer sensor
A driver designed for the accelerometer sensor used in the daughter board was already available

when I started this internship. Thus, I work on integrating the accelerometer data polling to the
GPS data frames retrieving test program. I ensure the compatibility of the two data polling (GPS
and accelerometer) using the same i2c bus.

FreeRTOS
As explained in section III.3 we choose the TDMA communication to exchange data between sensor

node and computer sink (see figure 1). This communication protocol is already written, but it needs
an operating system called FreeRTOS. This operating system is designed for real-time applications
and is suitable for most embedded systems. Therefore, to be able to use the TDMA communication
I need to design the application part over this operating system and use its features. I need to learn
the main principles of FreeRTOS and how setting up applications using this OS. This required to
analyse basic services provided by FreeRTOS such as task creation, to more elaborate ones as task
scheduling or task heap 20.

Implementation of TDMA communication
This step is the more complicated I faced as I have to deal with compatibility problems between

the GPS and the TDMA drivers.

First of all, as explained in the section III.3, the communication ports of the MSP430 micro-
controller are limited. Thus, the GPS driver can not use the port 1 (the UART link) because wireless

20The heap is a memory space allocated to a task. The memory space is used by tasks to store local variables
allocation and to realize other tasks needing no-persistent memory space.

IV.2 Software implementation 15

chip driver needs port 1 as it uses the SPI bus. Therefore, the driver of GPS module needs to be set
up as to use i2c bus.

Secondly, as mentioned in paragraph i2c communication in section IV.2.1, both FreeRTOS and
the TDMA driver need timers. On MSP430 micro-controller only two timers are available, the first
one is required by the FreeRTOS scheduler and the second one is used by the TDMA driver. Thus,
i2c data polling is no more possible using timer when implementing the application part. We decide
to perform the polling via an over-layer instead. Then the driver can be used in any application on
any operating system or on bare machine. Nevertheless, the designed over-layer can ease the driver
utilization for applications using either FreeRTOS operating system or bare machine (difference is
made via a dedicated compilation flag).

The version designed for bare machine uses a micro-controller timer to count elapsed time, and
uses the strategy described in paragraph i2c communication in section IV.2.1.

As for FreeRTOS applications, I used features released by the operating system to handle the
periodic polling. The GPS initialization and polling are realized by a FreeRTOS task constantly
active (run as a background task). This task, after µ-blox GPS module initialization, executes an
infinite loop to handle the data polling. To measure precisely the elapsed time between two pollings,
I use the delay feature of FreeRTOS. This function put a task to sleep during a predefined constant
time. During this sleeping period other tasks, like accelerometer polling or TDMA data sending, can
become active and use the processor resource. When the sleeping time of the GPS task run out, this
one is awaken and is activated if its priority is higher than other runnable tasks.

At last, I had trouble with the TDMA link itself. TDMA communication needs ongoing exchange
of synchronization beacons between nodes and the sink. Therefore, the TDMA is not only active
when a data sending is required, but it is running all time in background and sometimes it needs
processor resources to preserve the wireless link.

Therefore, when integrating the TDMA communication and the GPS driver, problems relative
to i2c access appear. The i2c access can not be performed if TDMA beacons come up during this
moment.

The easiest, but not working, solution is to mask all interruptions during the reading task. This
should ensure that during the reading all processor resources are allocated to the reading and no other
task can be active and run. This strategy does not work because the period of time interruption are
masked is too long and many synchronization beacons can not be receive and are considered as lost
by the TDMA driver. So the wireless link is always broken and lot of data are lost.

Finally, I succeed in handling the i2c access, without damaging the TDMA link, modifying the
tasks priorities. During the reading, the task priority is set to the maximum priority level. Thus, the
TDMA reception interruptions can be raised and no beacons are lost. Nevertheless, the TDMA task
can not be active and can not process the received data. The i2c reading is not delayed anymore.
Once the reading is fulfilled, the priority is reset to a lower level for the data parsing task, allowing
the TDMA task to be active and run if wireless link needs to be preserved.

Now, the TDMA communication works well together with the GPS data frame polling.

V Validations tests and results 16

V Validations tests and results

V.1 Validations tests

V.1.1 GPS accuracy characterization and driver validation

Regarding the µ-blox GPS sensor, two kinds of validation have been performed : the validation
of the driver and the accuracy characterization of data provided by the GPS sensor.

Driver validation
The driver validation is divided in two steps. The first one is to ensure that configuration settings

are well taken into account by the GPS module. To check this point, I try different settings parameter
values and, I reread the values set in the “registers”. As for the frame sending frequency changes for
example, I just control the effective rate modification.

To ensure that the driver can work for a long time, I check that data polling and data parsing
can be performed many times without bugs. Like in many embedded systems, there is no choice to
check the good working of programs, to run during a long time. Thus, if the GPS drivers run during
one hour without bug, we consider the driver to be functional. This period of time was defined by
my supervisors in relation to the driver application goal. The drone flying time being limited to 10
minutes long because of batteries), the GPS module would not be run more than an hour without
being restarted.

Characterization of GPS measures accuracy
The characterization of the µ-blox GPS module implies to evaluate how accurate the measures

provided by the GPS module are. Two type of characterization have been studied : the static and
the dynamic characterization.

• The static characterization consists in computing the measure errors for the GPS module sets
in a fixed position. The GPS antenna was laid on a characteristic point just front of the
INRIA place to perform this characterization. I stored many position measures given by the
GPS device and I calculate the standard deviation from the mean measure values. I use the
projected values provided by the GPS module which are given in meter. The result is given in
figure figure 7. The green line represents the mean value and the purple lines show the standard
deviation and the blue line is the data.
Thanks to these measures, I was able to calculate the static accuracy of the device : the
standard deviation is 32cm for x axis, 19cm for y axis and 53cm for z axis. This accuracy
seems to be sufficient enough to set up the control algorithms on drones.

V.1 Validations tests 17

Figure 7: GPS static characterization result for 1500 points on x axis. (the ordinate axis scale is in
meter).

• The dynamic characterization. I could not perform totally this characterization due to lack of
time and resources. To characterize the dynamic performances of the device a faithful reference
is needed. The measures of the reference are compared to the measurements of the µ-blox GPS
sensor. A very accurate centimeter scale GPS (from Thales) is available at INRIA and can be
used as the faithful reference. But the setting up of this device was complicated and I could
not perform the comparison between the two GPS data measures. Therefore, to ensure that
dynamic motions can be handled by the GPS sensor I perform some trajectories (on walking
or on a mobile car robot) with the sensor, (like circular trajectory for example) and I checked
with data plots that the sensor measures correspond to the trajectory.

V.1 Validations tests 18

Figure 8: Illustration of dynamic characterization with a trajectory made by a mobile car robot.

V.1.2 Validation of the wireless communication

A characterization of TDMA performance has been realized. First of all, a verification of data
transmission time has been performed checking the difference between the emission time and the
reception time. We verify that the time spent between two receptions is very close to the time
between two emissions. The second point is the characterization of TDMA maximum range. This
has to be done because no faithful data about this range was available. To retrieve this information,
I carry out the following test several times : I started the TDMA communication and I moved aside
the node board and the sink board until frames were not received anymore. Then with the GPS
position information I was able to measure a range value. Finally, in an outdoor environment without
obstacles, the range for the TDMA communication is around 20m.

V.1.3 Internship results

Concerning the hardware support, I make sure that the daughter board is functional and I find
two hardware bugs :

• the first one is an inversion in serial UART link : the transmission wire and the reception wire
are not reversed as it should be.

• the second one is related to the GPS antenna. The ground-plan (copper layer on the board)
is not removed around the antenna as it should be. Thus, this ground-plan causes interference
on antenna reception and no valid signal from satellite can be received. The copper layer needs
to be removed before, to be able to receive satellite signals correctly via this antenna.

As for the software I implement, the performed work covers the two parts specified at the begin
of the internship period : the µ-blox GPS driver and the node to sink communication application.
A description of the realized software is given in appendix A.6. The figure 9 shows the whole data
processing flow :

V.1 Validations tests 19

Figure 9: The whole data processing flow to retrieve the GPS data frames.

The figure 9 presents the different steps of the GPS data processing flow from µ-blox GPS module
retrieving to data on sink computer. At sink computer the data can be are stored in a file when
received from the sink board.

The work I realized uses at best the given resources. The µ-blox GPS driver manages the device
features, exploiting two of the three communication bus available (i2c, and UART) Moreover, most
of all configuration settings are easily customizable through the appropriate driver API. The only
characteristic the driver does not handle is the energy saving setting. Nevertheless, the µ-blox GPS
module do not reply fully to expectations as its maximum frame rate is limited to 4Hz which is not
enough to a enable a good drone control.

Concerning the TDMA communication, the data exchange works fine. However, this commu-
nication channel implies additional delays in the retrieving of the sensor data at the sink end. As
the GPS frames can not be updated often enough to provide position information in " real time"
with respect to the drone control, the accelerometer information could be make up for the GPS
frames. Accelerometer data could be updated at frequency of 640Hz which is enough for drones
motion capture but with TDMA communication latency, these data can not be send to sink end at
this rate.

As detailed on appendix A.2, the delay implied by TDMA link depends on the number of slots,
i.e. the number of drones flying. Thus the data exchange between a drone and the sink computer
can only operate at a period of 45ms which can be slow comparatively to drone motions. To over
pass the communication delay, and don’t damage the communication, we finally decide to sample
accelerometer data each 10ms and to send accelerometer data each 250ms at the same time as the
GPS data. Nevertheless, having a sample of acceleration every 10ms an integration of these data can
be performed and the lack of GPS data compensated.

But again, a problem persists. The sampling of accelerometer data can not be performed at a
rate of 10ms because each 250ms GPS frames must be read on the same i2c bus. The GPS data
frame length (128 octets) being longer than accelerometer frame the reading of the GPS frame takes
more than 10ms on i2c bus (it takes approximately 26ms, see appendix A.1 for more details). So
the lack of at least 3 accelerometer frames each 250ms should be taken into account at high level i.e.
within the drone control algorithms.

Finally, the system designed is functional and fulfilled the main specifications given by my intern-
ship supervisors. At present time, on the sink computer two recovery data mode are enable. Both
are based on a written program allowing the reading of the computer serial port [5].

V.1 Validations tests 20

• mode 1 : the drone motions are tracked and written in a file which can be easily plot with a
script execution. The reading and the storing of the data, in a file, are performed in a main
function.

• mode 2 : the position of the drone are integrated to the control program. Then, these data
can be used to control the drone motions as wanted. In this mode, the reading and the storing
of the data, in a appropriate data structure, are performed in a thread of the drone control
program. Thus, the memory being shared between threads, the drone control thread can get
the absolute position data in this structure and take it into account for the next commands
sent to the drone.

As for the second mode, some control tests were performed, using a basic proportional corrector.
Drone motions are commanded by these equations :

pitch = Kp(Xdest−Xinit)
roll = Kp(Y dest−Xinit)

The pitch and the roll are the command values sent to the drone. (Xinit, Yinit) and (Xdest, Ydest)
are respectively the coordinates of the drone takeoff point, and the drone destination point. The co-
ordinates are represented in the x/y axis of the GPS module. At beginning, the drone must respected
a predefined orientation. The front of the drone must be laid along the x axis. Thus, the x motions
correspond to the pitch commands. So we managed to take into account the absolute positions in
the drone controlling loop, and to move it to a predefined destination point. The system designed
fulfills its main goal because it eases the control of the drone motions.

Currently only GPS data are available in the drone control program data. But, in a near future,
an additional software should be designed on the sink part to integrate the GPS position and ac-
celerometer data in the drone control motion program. A plot of a drone trajectory is represented
in the the Figure 10. This plot presents the capability of the designed system to track the drone
motions despite the relatively slowness of the GPS data updating.

Figure 10: Illustration of a drone trajectory recorded by the designed system.

VI Balance sheet 21

VI Balance sheet
Regarding the technical aspect of this project, the major difficulty encountered is the setting up

of the wireless communication. As shown on the realization schedule in appendix A.5, this step takes
me a lot of extra time compared to the scheduled task time (cf appendix A.4). As explained in IV.2.2,
to reach an working wireless communication, the GPS driver needs to be re-written to use another
communication medium (for the record, the change from UART to i2c bus was required). This task
was the hardest of the project because of problems bound to the i2c bus were found and needed to
be solved before working on wireless communication. Moreover, a lot of time was spend to find the
best settings for the TDMA communication allowing a communication without loss.

Another technical problem I face during this internship is relative to the hardware support. At
the beginning of the project, routing problems were persistent on the sensors board. And at first
I lost much time thinking that if the driver worked wrong it was because of my program. But the
problems came from the hardware board itself. Thus, I learn that no bug sources could be ignored,
and, in project integrating hardware and software parts, bugs can come from anywhere.

This internship allows me to improve my knowledge about compilation issues. At Phelma school,
not enough emphasis is given to compilation mechanisms (like writing makefiles). Most of time
makefiles are already written for us. But thanks to help of my supervisors, I learn more about this
issue and I work on another compilation tool, useful for cross platform 21 compilation, “cmake”.

The code readability is another key point on this project and especially for the driver part. I am
used to comment the code I write but I do not really care on the readability of the code. As the
driver intent to be used by other people, the way the code is commented or formatted is very impor-
tant. Particularly for an internship project I will not be able to perform the follow-up of the driver.
Thanks to a real confrontation to a professional working environment I understand why coding rules
and comments are important.

Another interesting point to this internship is the use of a real-time operating system, as I want
to specialize on embedded system. I understand how real operating systems performed some specifics
real-time features like the static scheduling for example.

This internship taught me the self-government and the capability to work alone on a software
project. The autonomy given by my supervisors constrained me to more strictness in my work. My
supervisors let me work as a junior engineer could be work in a society. Namely, they don’t check the
work provided. This way of proceed constrains to work more carefully. The work done will be used
by other people as a faithful program. So the result need to be sure. I think it is a good preview of
engineer duties.

21In computing, cross-platform, or multi-platform, is an attribute conferred to computer software or computing
methods and concepts that are implemented and inter-operate on multiple computer platforms. For example, a cross
platform application may run on Microsoft Windows on the x86 architecture, Linux on the x86 architecture and Mac
OS X on either the PowerPC or x86 based Apple Macintosh systems.

VII Conclusion 22

VII Conclusion
The internship aims the integration of GPS and accelerometer sensor board for drone control

motion. This project needs abilities in many areas ranging from electronics skills to operating sys-
tem knowledge. Apart from the hardware support debugging, I work on designing a GPS driver and
setting up an entire communication flow, with wireless data exchanges.

To design the GPS driver, I understand how the GPS module works. Then, I work on the driver
implementation. I base part of my work on existing programs driving the micro-controller resources.
Then, I set up a TDMA wireless communication using real-time operating system skills (FreeeRTOS).
The wireless communication enables the recovery of data on a computer in charge to control drone.
At last, I implement an accelerometer sensor, basing my work on an existing driver, to improve the
motion tracking of the drone.

This project globally fulfills expectations of my supervisors. The robots platform needed by a
research team can be set up. Thus, the control algorithms could be check on physical support.

To conclude, this 10 week internship was a good preview of the engineer work in a research
laboratory. It shows me the kind of work asked to engineers in the low level software development.
Now, I will able to make knowingly my career choice.

A Appendix 23

A Appendix

A.1 Inter-Integrated Circuit (i2c)

The i2c bus is a serial communication bus used to exchange data between two or more integrated
circuits. Initially designed by Philips, the i2c standard is, nowadays, one of the most used in elec-
tronics. Moreover, it revealed to be one of the easiest standard with only a two-wire interface.
The following figure presents how we use the i2c bus in this project :

The figure A.1 shows the two-wire interface with the clock (SCL) and the data wire (SDA). In the
i2c standard the lines are in open-drain, which means that they need to be pull-up to the supply
voltage to work, as in figure A.1 the use of “Rp” resistance.

The standard i2c protocol for data exchange is the presented in figure A.1.

A data sequence begins with a start bit and ends with a stop bit. Then, for each byte sent an
acknowledge bit is waited for. Therefore, for each byte, 9 bit are really sent. The standard clock
rate are 10kHz, 100kHz or 400kHz. Normally, basic system operates with clock ranging from 0kHz
to 100kHz. For the communication with µ-blox GPS module, I set the clock rate to 70kHz being the
highest frequency supported by the GPS device.
For the record, the length of data read on GPS device, when a polling is performed, is 128 bytes
long. With a frequency set to 70kHz, the polling should last : (128 × 9) × 1

70000 ≈ 16.5ms
In practice, we get 26ms. This is longer than the theoretical result for two main reasons :

A.1 Inter-Integrated Circuit (i2c) 24

• the acknowledgment bits are not really received instantaneously after the data transmission;
• the processor can execute another task between two bytes reading.

The figure A.1 presents data transfer mechanism in slave to master mode, as implemented for sensor
data polling.

Concerning the reading and the writing of data on the i2c bus, the basic command sequence is the
following :

1. Send the START bit (S).
2. Send the slave address (ADDR).
3. Send the Read(R)-1 / Write(W)-0 bit.
4. Wait for/Send an acknowledge bit (A).
5. Send/Receive the data byte (8 bits) (DATA).
6. Expect/Send acknowledge bit (A).
7. Send the STOP bit (P).

Web source : http://www.best-microcontroller-projects.com/i2c-tutorial.html

A.2 Time Division Multiple Access (TDMA) 25

A.2 Time Division Multiple Access (TDMA)

As explained in glossary, TDMA is an acronym for Time Division Multiple Access. This is a chan-
nel access method for shared medium networks. Several users are able to share the same frequency
channel by dividing the signal into different time slots. In our case the frequency used by the radio
chip is set to 868MHz. The figure A.2 represents the classical way to divided time into slots for
TDMA standard.

The TDMA driver designed by the “Service Expérimentation et Développement” implements glob-
ally the same strategy. However, in addition to node slots, represented above, another slot is added
to ease the detection of a new node wanting to connect with the sink. Thus, if there is only a node
and a sink, the number of time slot required is two (= 1node+ 1nodedetection).
In the TDMA driver, the duration of each time slot is the same and can be defined by user. Never-
theless, the time slot duration can not be set to any value. The duration of a slot is related to the
length of data to be sent. The default setting for a time slot is set to 15ms for 119 useful data bytes
to be sent. Another parameter to take into account, when deciding the length of the packet to be
sent is that all packets will be added extra start and stop bytes : synchronization bytes and header
bytes. So it is important to optimize the number of useful bytes with regards to the sum of sent
bytes. The default values of the TDMA driver being computed to get an optimal rate, I keep these
values to set up the TDMA communication.

Last important point for the TDMA link : the number of time slots depends on the number of com-
munication nodes. The more nodes, the more time slots. Thus, if there is a lot of drones intending to
communicate with the sink, the delay between two time slots dedicated to the same node is increased.
And the reactivity of the system can be altered.
Note : Presently, if a node intends to communicate with the sink via TDMA, the delay between two
consecutive frames of the same node is 30ms.

Web sources : http://en.wikipedia.org/wiki/Time_division_multiple_access and http://www.senslab.info

A.3 Daughter board overview 26

A.3 Daughter board overview

The figure A.3 presents the daughter board integrating GPS and accelerometer sensors.
This board is intended to be connected to motherboard WSN430. The defective antenna is the
component located in the upper right corner of the board.

Web sources : http://www.senslab.info

A.4 Forward-looking Gantt diagram 27

A.4 Forward-looking Gantt diagram

A.5 Realization Gantt diagram 28

A.5 Realization Gantt diagram

A.6 Overview of software realizations 29

A.6 Overview of software realizations

A.6 Overview of software realizations 30

The diagram A.6 presents the class diagram overview of the software implementation performed dur-
ing this internship.
Arrow represents an implementation. The implementation has been coded in C language.
Only most important program files I write are presented in diagram A.6. Apart the timer A driver,
the TDMA and FreeRTOS sources, all other files have either created or updated.
All written source codes are managed by a revision control system (subversion). Thus, they can be
used and modified by other people working at INRIA.
The source code comments are compatible with doxygen (a documentation generator). So a docu-
mentation is available and eases the reuse of my work.

B Bibliography 31

B Bibliography

1. µ-blox GPS module :

• Web site : www.u-blox.com/en/lea-5h.html
• Data-sheet :

– LEA-5 µ-blox 5 GPS module: GPS.G5-MS5-07026-B4
– µ-blox 5 receiver description : GPS.G5-X-07036-G

2. mother board and daughter board :

• Web site : http://www.senslab.info

3. TDMA :

• Web site :
– http://en.wikipedia.org/wiki/Time_division_multiple_access
– http://www.senslab.info

4. i2c bus :

• Web site : Web source : http://www.best-microcontroller-projects.com/i2c-tutorial.html
• Data-sheet : MSP430x1xx Family : SLAU049F

5. unix serial port opening and reading :

• Web site : http://www.easysw.com/∼mike/serial/serial.html

6. doxygen documentation of MSP430 drivers :

• Web site : http://senstools.gforge.inria.fr/doxygen/main.html

7. words definitions :

• Web site : http://en.wikipedia.org
– http://en.wikipedia.org
– http://www.senslab.info

Glossary 32

Glossary
API an Application Programming Interface is a set of routines provided to simplify the use of a

software or hardware build up by other programmers.

ASCII TheAmerican StandardCode for Information Interchange (ASCII) is a character-encoding
scheme based on the ordering of the English alphabet. ASCII codes represent text in computers,
communications equipment, and other devices that use text. Most modern character-encoding
schemes are based on ASCII, though they support many more characters than ASCII does.

CSMA Carrier Sense Multiple Access (CSMA) is a probabilistic Media Access Control (MAC)
protocol in which a node verifies the absence of other traffic before transmitting on a shared
transmission medium, such as an electrical bus, or a band of the electromagnetic spectrum.
"Carrier Sense" describes the fact that a transmitter uses feedback from a receiver that detects
a carrier wave before trying to send. That is, it tries to detect the presence of an encoded signal
from another station before attempting to transmit. If a carrier is sensed, the station waits for
the transmission in progress to finish before initiating its own transmission. "Multiple Access"
describes the fact that multiple stations send and receive on the medium..

driver A driver is a software application allowing to configure and to use easily an hardware device
by programmers (or operating systems) through a given API (see the entry concerning API).

GPS Global Positioning System (GPS) is a space-based global navigation satellite system that
provides location and time information in real-time.

micro-controller a micro-controller is a “small computer” on a single integrated circuit, contain-
ing a processor core, memory, and programmable input/output peripherals like analog-digital
converters, serial ports communication,....

NMEA NMEA is data specification for communication between marine electronic devices such as
echo sounder, sonars, GPS receivers and many other types of instruments. The NMEA standard
uses a simple ASCII, serial communications protocol that defines how data is transmitted in a
"sentence" from one "talker" to multiple "listeners" at a time. Here is an example of a NMEA
GPS frame : $GPGGA,092750.000,5321.6802,N,00630.3372,W,1,8,1.03,61.7,M,55.2,M„*76.

Operating System AnOperating System (OS) is a set of programs and data in charge of managing
the computer hardware resources, such as memory, cpu, task scheduling and providing common
services for software application to be run on the computer..

TDMA Time Division Multiple Access (TDMA) is a channel access method for shared medium
networks. It allows several users to share the same frequency channel by dividing the signal
into different time slots. see appendix A.2 for more elaborate description.

