
INRIA Rhônes-Alpes Montbonnot
Second Year Internship

from July 13th to August 19th
Internship tutor : Sandrine Avakian, Fabien Jammes

Wireless Sensor Network
Dorian Haglund

<dorian.haglund@ensimag.fr>

Montbonnot, August 19, 2011

Contents

1 Context - INRIA 3

2 Internship goals 4
2.1 Toolchain . 5
2.2 Sensors Drivers . 5
2.3 Logging data on a SD card . 6
2.4 Radio device . 6
2.5 TDMA . 6

3 Work actually done 7
3.1 Toolchain . 7
3.2 Sensors Drivers . 8
3.3 Logging data on a SD card . 8
3.4 Radio device . 10
3.5 TDMA . 10

4 Results 10
4.1 Sensors drivers . 10
4.2 File System Drivers . 11
4.3 Running FreeRTOS . 11
4.4 Radio device . 11
4.5 TDMA . 12

5 Conclusion 12

6 References 12

7 Appendix 12

2

Introduction

This report details the internship I made during summer 2011 in IN-
RIA Rhônes-Alpes. During the internship I worked on a sensor net-
work platform which can have various applications in sport, healthcare
or robotic fields. For example, if the sensors measure precisely a skier’s
trajectory, it can be recreated numerically and help the skier to improve
his performance. Another example is, if someone has a non functional leg,
the sensors can measure the movements and the forces impulsed by the
sane leg, and recreate it on the deficient leg to simulate a walk.

This platform is called Senslab. Its purpose is to provide a large scale
open wireless sensor network to researchers to enable them to test their
protocols for such networks. Furthermore, the platform offers a set of
tools to help in the design, development, tuning, and experimentation of
real large-scale sensor network applications.

This network is made up of 1024 nodes distributed over 4 INRIA sites
and remotely programmable for scientific research experimentation.

Figure 1: Senslab Network a

ahttp://senslab.inrialpes.fr/wp-content/uploads/2010/07/carte.png

So far SWN430 board were used, but to overcome limitations due to
hardware capacities, the INRIA decided to use a more powerful board
based on the STM32 micro-controller. To use this board in the network
the software must be adapted for the new device. This is the part I worked
on.

We will first present the institute, then we will explain my goals. We
will explain the work actually done afterward. Finally, we will discuss the
results obtained and conclude.

1 Context - INRIA

I did my internship at INRIA Rhône-Alpes, located in Montbonnot, Isere France.
It is a state institute of research in computer science and automatic. It’s com-
posed of various research teams and, among other services, a software devel-
opment support service where I worked named SED. Its purpose is to support
the other teams by providing help for development tools, to create experimental
platforms and to participate in the research teams’ software development. My
supervisors was Sandrine Avakian, who is a generalist engineer in electronic,

3

telecommunication and computer science and Fabien Jammes who is also a gen-
eralist engineer specialized in image synthesis. Some of the SED’s members who
had worked on the Senslab project left the INRIA to create their own company
named HiKoB but continued the work they previously did in SED. They wrote
most of the drivers I worked on.

2 Internship goals

My main goal was to implement the same features as the WSN430 on the new
board. Given that their hardware specifications were different, I had to under-
stand hardware behavior and then upgrade the C software efficiently. Figure 2
is a picture of the new card.

Figure 2: La carte STEVAL-MKI062V2 a

ahttp://www.st.com/internet/evalboard/product/250367.jsp

As you can see in this capture, the board has several devices such as :

• a pression sensor (LPS001DL)

• a temperature sensor (STML75DS2F)

• an accelerometer and a magnetometer (LSM303DLH)

• a gyroscope (LY330ALH)

• a SD slot

From capturing the data with different, to configure and use the operating
system on this micro-controller, a whole set of different features had to be
implemented. So the users could use this more effecient board for their projects.
An example of a project which could use the sensor network is represented in
Figure 3

4

Figure 3: Overall project structure

As shown, the data are captured by the sensors then transformed to be able to
reconstitute the trajectory. My work was focus on the left part of the scheme,
the capture part.

To achieve this target, several things had to be done. First of all, I had so
set up my working environment to be able to program on the STM32 board. I
helped replacing the former board (WSN430) with the new, from the software
point of view.

The embedded processor is a STM32 of the Cortex-M3 family using the
ARM architecture. This board is in fact a benchmark for this new processor.

I firstly had to set up the toolchains to programming on the board, then I
worked on two sensors drivers. After this I tried to log the data to a SD card.
Finally I try to use a radio chip with the card.

2.1 Toolchain

Firstly I had to install the tools that would allow me to compile and run pro-
grams on the new card. Since the sensors’ processor are not the same as usual
personal computers processors, the program need to be translated for the spe-
cific board. So the whole compilation chain must be redefined, this is called
“cross compilation”. Once the program is compiled, it needs to be written
(flashed) on the card. The service provided an interface for flashing the card
through a JLink. When the program is running on the new card, it has to be
debugged. A way to do this is to use an on-chip debugger, which allow to run
instructions step by step. I worked on a different Operating System (OS) than
the other members of the team who worked on this project.

The software was already known, but I had to figure out which version to
install, how to use them and how to make it work together on a Fedora. The
toolchain was :

• gcc-4.4.4 : Gnu C Compiler. This compiler support cross compilation for
various processor family such as ARM.

• newlib-0.19 : libraries for embedded system.

• binutils-2.20.1 : Binary utilities providing linker and assembler.

• OpenOCD : Open On Chip Debugger.

These programs were already installed and tested on other machines, so I had
to see if they could work on a Fedora Linux system.

5

2.2 Sensors Drivers

At first, I had to test and debug the drivers created for the new card. Functional
drivers implemented by ST Microelectronics for the card already existed, but the
code that we had was not clear enough and and not easy to maintain, plus the
drivers were not efficient enough to match the various applications requirements.
This is why the development team decided to write new ones which were smaller
in term of code size which reduced the memory used.

To communicate with its surrounding peripherals such as the sensors or the
micro-SD slot, the card’s processor needed drivers which could run the various
communication protocols. The various components of the card are not connected
all through the same buses so there are a driver for each bus.

The pressure sensor and accelerometer I worked on used the I2C bus. I2C
for Inter Integrated Circuit, is a bus to connect the sensor to the processor.
I had to check the communication process between the core and the sensors
through this bus.

The protocol contains many synchronization phases, which were implemented
by busy-waiting algorithms. Another way to solve this issue would be to wake
up the process on an interruption because the I2C bus is rather slow and busy-
waiting is a waste of processor resources. But the team was not experimented
with this I2C bus so we decided to take a simple approach first.

2.3 Logging data on a SD card

Once the drivers for the magnetometer and the pressure sensor were completed,
I had to log the data on a micro-SD card. To do so, I debugged and tested the
file system (FAT32) drivers and the file system interface. A file system is a way
to organize data on hard drives like SD cards or hard disk drive. The interface
is used to make the file system transparent to users. This is useful because when
the file system change, most of the programs can remain the same.

Then a real time operating system (FreeRTOS) needed to be installed on
the new card, which would manage the tasks that capture the data and transfer
them either to a SD card or, later, to other boards. Another approach is to
run the tasks alone on the card (without any OS) independently using timer
synchronization. But for only two tasks, this solution complexity is very high.
Indeed, assuming that the timers are correctly synchronized, there is no way to
predict the ISR (Interrupt Service Routine, launched by the timer) duration. If
a timer finishes before the previous ISR ends, that would imply data loss. Not
to mention that if more task end up be added, the problem would become even
more complex.

That is why the service decided to use an OS, which imply more memory
usage, but improve the code clarity and the stability of the running program.
FreeRTOS was chosen as embedded real time OS because it is a very light and
free OS for embedded system and real-time oriented. Moreover it was previously
used by other employees, which means that the code review would be much
easier. Other systems were tested such as Contiki and TinyOS, but for this
application FreeRTOS was better. As a matter of fact, TinyOS is written in
NesC (Network Embedded System C) and is not made for real-time applications
and Contiky has a too heavy kernel because of his various functionality.

6

Figure 4: TDMA divide each frequency channel into multiple time slots a

ahttp://people.seas.harvard.edu/˜jones/cscie129/nu lectures/lecture3%20/TDMA01.html

2.4 Radio device

The card I worked on doesn’t have an integrated radio device. Since the goal is
to set up a wireless sensor network, an external radio module was plugged on
the board.

Once again drivers were needed in order to communicate with the radio.
Drivers were already written for an other board than the STEVAL-MKI062V2,
so I could follow the example of this code and adapt it.

The first step was to make the micro-controller communicate with the radio
module. Then I had to make basic transmission and reception work, to see if
the radio could send data over the network. To test the reception, I was given
an antenna that emitted packed on the required frequency.

2.5 TDMA

TDMA (Time Division Multiple Access) was chosen as the communication pro-
tocol at the mac layer. It is a simple protocol based upon time slots allocation
to the network nodes. TDMA was chosen over CSMA because its timings are
more accurate, there is less data loss and is lighter on the battery state (nothing
to do between two time slots).

In this architecture there are two types of nodes, the sensor nodes which use
the sensors to record data and send it to the coordinator node which discover
the new capturing nodes, attribute the time slots and fetch the data. Figure 5
shows the machine state of a sensor node.

7

Figure 5: The node Finite State Machine a

aA beacon is message sent by the coordinator to all the nodes to provide its parameters

The coordinator nodes reserved a specific time slot for new node discovery.
Figure 6 shows the procedure when a new sensor node appears.

Figure 6: Coordinator node discovering a new node

8

I had to write the communication protocol for the capturing and the coor-
dinator. Once again, code was provided for other boards, and so was the state
machine.

3 Work actually done

3.1 Toolchain

Since I had to work on a board using an ARM processor and with no display
screen, I started by installing the right compiler in order to be able to flash
the board. Then I had to set up a proxy between the card and my personal
computer in order to use debug utilities such as gdb and display execution traces.
A real time operating system was also needed to run the programs. Since the
development chain had never been installed on a Fedora system, I wrote a quick
tutorial so the team will be able to set it up quickly.

The toolchains contains :

• GCC is the compiler itself, it calls the binutils tools and the newlib library.
It

I learned that on embedded device, you have to map the code, the data, the
ram to specific part of the micro-controller device memory. And so how to write
a linking script which tells gcc how to do so.

FreeRTOS is embedded Operating System, which will be described below.
The various compilation-related software described above and the rather

complex installation procedures to set them up helped me to know the compi-
lation chain better. Furthermore, it get me to know project compilation tools
such as cmake which can generate makefiles (files containing the compilation pa-
rameters) from simple text configuration files, and manage new project source
file in a simple way.

3.2 Sensors Drivers

On the first weeks, I worked mostly on I2C bus. Firstly I had to become
familiar with the embedded technologies, which I had never studied before. I
had to understand the the code given, and check every step.

The main part of the work was to check if registers were set to correct values
and if the bus commands were sent in the right order. To do this I used GDB
which allow to print the value stored at a given address - to examine registers
- and see where are the infinite waiting loop. Such loops appear if the protocol
is not respected. The protocols were documented in reference documentation of
the board, provided by ST Microelectronics.

3.3 Logging data on a SD card

SD Drivers

When the sensors drivers were functional, the team wanted to be able to to
write the data on a SD card. Drivers for the sd card and for the FAT32 file
system were already written by HiKoB, but not fully tested yet. I had to test
and debug the drivers using a benchmark. The benchmark consisted in writing

9

raw data into various hard-coded locations on the card, and read it afterward
to see if the result was consistent. As a consequence, I had to learn about the
Fat32 file organization, in sectors and clusters, and how to edit he FAT (File
Allocation Table).

FreeRTOS

We used FreeRTOS as the real time operating system to manage the logging
tasks. I had to get familiar with this OS and configure it to match the application
requirements. FreeRTOS configuration consists in editing one file which set the
OS main behaviors such as memory management, size of allocated memory,
process and threads policy, etc. FreeRTOS allowed us to :

• Choose the memory management. Since the tasks don’t need dynamical
memory allocation or deletion, the simplest memory manager (and less
ram-consuming) available was the best choice. In this system all the object
are allocated statically and never freed.

• Set the right stack/heap size. When my code was finished, I had to reduce
the stack given to each task, to optimize memory usage. To do so, I
gradually reduced the allocated memory until the program crash and the
moved back to last good value with a 10% margin for obvious safety reason.
Another approach is to to examine stacks’ task using GDB and see the
deepest address used in the stack. But this approach was complicated and
the code was likely to change, so a too precise analysis was pointless.

• Get the tasks to work together. Tasks can run at different priorities, as-
suming that the highest priority task preempt on (take the processor from)
the lower priority tasks, I had to deal with starving issue. The tasks run
simultaneously, so I had to deal with all the usual concurrency program-
ming issues, such as race condition, resource starvation, deadlocks, etc

• Test the whole program. Since the several components were already tested
individually, I let the operating system run for hours (a night and half a
day) in order to see if any race condition, stack overflow, or other run-time
related errors occurred.

To write on the sd card, a classis producer-consumer pattern was used :

The data log is made of two steps :

• First, write captured data in a buffer. To do so, a free buffer (not dirty) is
needed. A buffer is dirty when it contains data and has not been written
on the card yet. When a free buffer is chosen, we must access it with
the guarantee that no other tasks are using it. That is why we need a
mutex for this buffer. A mutex is a structure that guarantee the access to
a resource by a only one process at a a time. Once the data are stored on
the hard drive, the buffer is usable and can be chosen by the sensors.

• Second, write a buffer to the SD card. A buffer must be chosen, but among
the dirty buffers some are more filled than others. The more used buffer
is chosen, and once the access is granted by a mutex, access to the buffer
(and lock it), and write it down on the card.

10

Figure 7: Buffers were accessed by two process in a concurrent manner

Actually, the algorithm is more complicated. In fact, there are two mutexes
for each buffer. One to access the buffer header, which describes the buffer’s
state, and one to access to the data itself. This permits to check the buffer
state when the data is locked. This allow to speed up the choosing function,
but increase the complexity.

Once again, the tasks were already written by the SED team but not func-
tional. That is why I needed to first understand the concurrent access to buffers,
and then correct it. This was the more complicated but the more interesting
part of my internship. The SD standards don’t guarantee a stable response time
when writing to the sd, but they do guarantee a maximal response time. This
maximal response time is far too big for the log task to fit in between two cap-
tures. To overcome this issue of irregular writing time, it has been decided to
use 15 buffers to prevent data loss. 15 buffers was the best compromise between
memory allocation, and safe writing. If more buffer are used, every task’s stack
must be increased, and with less buffer, the data loss risk is too high.

3.4 Radio device

The first step was to make the micro-controller communicate with the radio
module. To do so, I configured the micro-controller and tried to read registers
into the device, which had predefined values.

The radio device was connected to the board via an SPI bus. A Serial
Peripheral Bus is used to connect a slave (in our case, the radio) to a master
module (the micro-controller). It had to configure ten lines. Using the board
data sheet I had to map the correct line to the micro-controller such as MISO
(Master Input Slave Output), MOSI and the interrupt and timer. I also had
to set the clock for the device. On the board, the main clock goes by various
electronic circuit which slow down the clock such as prescaler – which purpose
is to divide the clock to simulate a lower frequency – or speed it up (like the
Phase locked loop). I retraced all the way the clock went by to finally set the
device clock accordingly.

While setting up the ISR (Interrupt Service Routine). I discovered something
wrong in the linkage script. This script is in charge, among other thing, of setting
the memory outline, and it did not map the NVIC (Nested Vector Interrupt
Controller : which contained the adress of the ISRs) well. I hence learned the

11

script syntax and was able to understand the sections repartition according to
the option given to gcc such as -ffunction-sections or -fdata-sections. These
options allowed to improve the performance of the linkage, but were finally
removed because they caused problems in debug phase.

3.5 TDMA

I did not have enough time to port the TDMA protocols entirely on the new
card. But I wrote the sensor node part, without being able to test it correctly
because the coordinator part was not written and I had only one card. But
I could deduce, from the other card drivers – which were written under more
hardware constraints – the finite states machine.

4 Results

4.1 Sensors drivers

Thanks to the uart bus plugged in my machine’s usb port, I was able to print
the value captured by the sensors live. This can be done by connecting a ter-
minal to the USB port such as minicom or gtkterm. So I was able to see if
the numbers were varying accordingly to what was expected. For example, as I
was rotating the board in order to put an axis toward the ground, I could see
the acceleration (provided by gravity) jump from one axis to the other. I could
test the magnetometer by pulling up electronic device such as mobile phone. In
a similar way, as the temperature sensor is very precise, I could see the values
going up or down as the room was cooling down or warming up. Once the trans-
formation part of the project is done, we will be able to reproduce the board’s
movement because there will be full inertial module running (accelerometer and
gyroscope) and represent the temperature variations.

4.2 File System Drivers

In order to check the drivers for the FAT32 file system, there was two things to
look at. First : if given a certain address on the hard drive we could effectively
write on it. To do so, we first launched the program, and then plugged the card
into a standard computer and ran the Linux dd program which can dump what
it read on a device. By piping the output of dd to an hexadecimal interpreter (
hexdump), we could see if the data was actually there. After this, I had to test
the file system interface, so I created, filled, and closed a file on a program on the
board. Then I mounted the card on a computer, to see if the file was recognize
by the FAT32 driver of the Linux kernel. Then I unmounted the device, and
dumped it to see if the address in the file allocation table (FAT) matched the
effective data address.

4.3 Running FreeRTOS

To test the tasks running on FreeRTOS, I let the logging program run for a
night and half a day, to see if any deadlocks or starvation, occurred. Then I
checked the data on the sd card to see if they were consistent. Even is this test
does not provide any formal guarantee that all cases were covered, it was judged

12

good enough to valid the software. As a matter of fact, if any formal proof were
possible, it would be very complex and time consuming.

I also set several stack size, and switch the priorities, to check the code
stability. As it is, the tasks priorities favors the capture to the data recording.
I tried to make my code stable the other way around, which means to pay the
cost of an additional mutex.

4.4 Radio device

To check if the radio pins were correctly configured, I read some internal reg-
ister of the radio chip which value were set by hardware. This allow me to
check, in one test, that the VCC (power supply bus), the MISO (Master Input
Slave Output), the MOSI (Master Output Slave Input), and the clock pin were
correctly set. The next two pins to test was the IRQ (interrupt pin) and the
timer pin was correctly set. To do so I simulated a transmission, which would
launch an interruption, and then a reception to see if the packet are correctly
timestamped, and thus proving that the timer is working correctly.

4.5 TDMA

I was not able to run any test on node part of the TDMA protocol since my
code was not finished.

5 Conclusion

This internship contributed greatly to my formation by giving me knowledge
about embedded system and hardware architecture, compilation chain and var-
ious debugging tools. He also allowed me to discover how to work on large scale
project, knowing that my code will be reviewed, and so made me understand
the value of a good documentation. He reassured me on my formation because
I met a lot of problems studied in class.

6 References

Site of the tools used :

• INRIA : http://www.inria.fr/

• SED Rhônes-Alpes : http://sed.inrialpes.fr/

• Senslab : http://www.senslab.info/

• Board : http://www.st.com/internet/evalboard/product/250367.jsp

• Real Time Operating System : http://www.freertos.org/

• Proxy debugger http://openocd.berlios.de/web/

• Compiler http://gcc.gnu.org/

13

7 Appendix

STEVAL-MKI062V2 data sheet :

5

5

4

4

3

3

2

2

1

1

D D

C C

B B

A A

DM
DP DP

DM

USBDP

USBDM

Push_Button

User_LED

RESET#

PR_X_OUT

Yaw_OUT

PR_Y_OUT

ST_LYaw
PD/Sleep_LYaw

GPIO1_PA8_MCO

BOOT0

INT1_ACC

INT1_PS
USB_DISCONNECT

Push_Button
SDCard_CMD_PD2

User_LED

SDCard_D0_PC8

V
B

A
T

RESET#

VDDA

V
D

D
A

SDCard_D1_PC9

V
D

D
_4

SDCard_CLK_PC12

V
D

D
_3

UART2_RX
UART2_TX
UART2_RTS
UART2_CTS

JTDI

JTMS

USBDP

JTDO
JNTRST

V
D

D
_1

JTCK

V
D

D
_2

VDD_4VDD_2

VDD_1VBAT

INT2_ACC

SDCard_D3_PC11

VDD_3

OSCOUT

SDCard_D2_PC10

OSCIN

OSC32_IN
OSC32_OUT

I2C1_SCL

SPI1_SCK
SPI1_CS

Mag_DRDY
I2C1_SDA

I2C2_SDA
I2C2_SCL

SPI1_MISO

BOOT0

SPI1_MOSI

USBDM
LPR_Vref

Gyro_PR_RST

GPIO3_PC3

LYaw_Vref

PD/Sleep_LPR

GPIO4_PC7
nOS/INT

ST_LPR
GPIO2_PB0

LYaw_Vref

S
T

_L
Y

aw

P
D

/S
le

ep
_L

Y
aw

LYaw_Vref

Yaw_OUT

Yaw_OUT

INT1_ACC

INT2_ACC

I2C1_SDA

I2C1_SCL

I2C1_SCL

I2C1_SDA

Mag_DRDYRES_CAP

SA0_A

SDCard_CMDSDCard_CMD_PD2

SDCard_D0_PC8

SDCard_D1_PC9

SDCard_CLK_PC12

SDCard_D3_PC11

SDCard_D2

SDCard_CLK

SDCard_D0

SDCard_D2_PC10

SDCard_D1

SDCard_D1

SDCard_CMD

SDCard_D0

SDCard_D2
SDCard_D3

SDCard_CLK

SDCard_D3

PR_X_4xOUT

PR_X_1xOUT
PR_X_OUT

PR_Y_OUT
PR_Y_4xOUT

PR_X_1xOUT

LPR_Vref

LPR_Vref

P
R

_Y
_4

xO
U

T

LP
R

_V
re

f

PR_Y_1xOUT

S
T

_L
P

R

G
yr

o_
P

R
_R

S
T

P
R

_X
_4

xO
U

T

PR_Y_1xOUT

LPR_Vref

P
D

/S
le

ep
_L

P
R

PR_Y_OUT
PR_X_OUT

LPR_Vref

LPR_Vref

UART2_CTSUART2_RTS
UART2_RX UART2_TX

A1

A2

I2C2_SCL

I2C2_SDA

A0

nOS/INT

SPI1_CS
SPI1_SCK
SPI1_MISO

SPI1_MOSI

GPIO1_PA8_MCO

GPIO2_PB0

GPIO4_PC7
GPIO3_PC3

OSC32_IN OSC32_OUT

OSCOUTOSCIN

USB_DISCONNECT

LYaw_Vref

JNTRST

JTDO

JTMS

JTDI

JTCK

RESET#

INT1_PS

I2C2_SDA
I2C2_SCL

USB_5V

+3V3AVCC

Vin

+3V3

GND

+3V3

GND

GND GND

+3V3

GND GND

+3V3
GND

+3V3+3V3

GND

GNDGND

+3V3

GND

+3V3

+3V3

+3V3

+3V3+3V3

+3V3
AVCC

GND
GND

GND
AVCC

+3V3

GND

GND

AVCC

+3V3

+3V3

AVCC

+3V3+3V3
Vin

VCC_EXT

VCC_EXT

USB_5V

+3V3

+3V3

GND

1V8

Vin

Vin

1V8

1V8

+3V3+3V3

+3V3

+3V3

GNDGND
+3V3

+3V3

+3V3

Title

Size Document Number Rev

Date: Sheet of
iNEMO V2 1.0

STEVAL-MKI062V2 STMicroelectronics

Custom

2 2Thursday, April 08, 2010

Title

Size Document Number Rev

Date: Sheet of
iNEMO V2 1.0

STEVAL-MKI062V2 STMicroelectronics

Custom

2 2Thursday, April 08, 2010

Title

Size Document Number Rev

Date: Sheet of
iNEMO V2 1.0

STEVAL-MKI062V2 STMicroelectronics

Custom

2 2Thursday, April 08, 2010

RS (515-1995)
Molex (54819-0572)USB

Wurth Electronics:
74279206
RS: 358-6765

3.3V Power Management

RS (505-9186)
C&K (Y78B22110FP)

RS (505-9186)
C&K (Y78B22110FP)

LED RESET PS BUTTON

microSD

Kingbright KP2012SURC
RS: 466-3829
Farnell: 8529930
LED 0805

Kingbright KP2012MGC
RS: 466-3778
Farnell: 8529906
LED 0805

Hirose Electric:
DM3AT-SF-PEJ
Digikey:
HR1939CT-ND

RS (533-1804)
AVX (TAJR225K006RNJ)
Dimension2012-12 metric equal to 0805

RS (405-9517)
AVX (TAJR106K006R)
Dimension2012-12 metric
equal to 0805

STM32F103RET7

Place near MCU

RS (405-7779)
AVX (TACL105M006R)
Dimension 1608-10 metric
equal to 0603

MCU STM32F103
For further details please refer to datasheet

1-AXIS Gyroscope LY330ALH (Yaw)
For further details please refer to datasheet
and User Manual

HP Filter
(Optional)

RS (405-9517)
AVX (TAJR106K006R)

DigiKey:
587-1093-1-ND

LP Filter
(Reccomended)

I2C Address Accelerometer:
Read: 0x33
Write: 0x32

I2C Address Magnetometer:
Read: 0x3D
Write: 0x3C

Z

Y

X

RS (405-9517)
AVX (TAJR106K006R)

LP Filter
(Reccomended)

DigiKey:
587-1093-1-ND

HP Filter
(Optional)

2-AXIS Gyroscope
LPR430AL (Roll/Pitch)
For further details please refer to datasheet and User Manual

HP Filter
(Optional)

RS (405-9517)
AVX (TAJR106K006R)

Default 1

LP Filter
(Reccomended)

Default 1

Not Mount

Not Mount

N
o
t

M
o
u
n
t

N
o
t

M
o
u
n
t

Y

X

EAO 09.03201.02
RS: 115-6283
Farnell: 1608080
Distrelec: 210007

232

I2C Address:
Read: 0x91
Write: 0x90

Temperature Sensor
For further details
please refer to datasheet

Digikey (WM18900-ND)
Molex 22-05-7025

Power Selector

Extended Connector

Murata (CSTCE8M00G55-R0)
DigiKey (490-1195-1-ND)
RS: 283-961
Farnell: 1615352

DigiKey (300-8633-1-ND)
Farnell: 1457098
Citizen (CM130-32.768KDZF-UT)

OSCILLATORS

SOT23-5L

Female Connector 2x5
Pitch 2.54 mm

Test Point:
Vero technologies: 20-2137
RS:101-2391

Test Point:
Vero technologies: 20-2137
RS:101-2391

Default 3

RS (405-7779)
AVX (TACL105M006R)
Dimension 1608-10
metric equal to 0603

SOT23-5L

SOTT323-6L

LQFP-64

LGA 28L

LGA 10

LGA 28L

Micro QFN

LSM303DLH
6-axis Geomagnetic Module
For further details please refer to datasheet

Male Connector 2x3
Pitch 2.54 mm

HP Filter Enabled:
Assembly R/C1 --> C 4.7 uF
Assembly R81 1M Ohm

HP Filter Disabled:
Assembly R/C1 --> R 0 Ohm
Not Assembly R81 1M Ohm

HP Filter Enabled:
Assembly R/C2 --> C 4.7 uF
Assembly R85 1M Ohm

HP Filter Disabled:
Assembly R/C2 --> R 0 Ohm
Not Assembly R85 1M Ohm

HP Filter Enabled:
Assembly R/C3 --> C 4.7 uF
Assembly R76 1M Ohm

HP Filter Disabled:
Assembly R/C3 --> R 0 Ohm
Not Assembly R76 1M Ohm

JTAG/SWD

Male Connector 2x5
Pitch 1.27 mm
SAMTEC FTSH-105-01-F-D-K

I2C Address:
Read: 0xBB
Write: 0xBA

RS (405-9517)
AVX (TAJR106K006R)

Pressure Sensor LPS001DL
For further details please
refer to datasheet

LGA 16

Default: R --> O Ohm

Not Mount Not Mount

Not Mount

Default: R --> O Ohm

Default: R --> O Ohm

R83 27kR83 27k

U13 LPR430ALU13 LPR430AL

OUTX1

NC2

NC3

NC4

4xINX5

NC6

4x
O

U
T

X
7

N
C

8

V
D

D
9

NC 10

NC 11

N
C

12

N
C

13

4x
O

U
T

Y
14

NC 15

4xINY 16

V
C

O
N

T
17

F
IL

T
V

D
D

18

V
D

D
19

OUTY 20

NC 21

V
R

E
F

22

N
C

23
H

P
24

R
E

S
25

G
N

D
26

S
T

27

P
D

/S
le

ep
28

C27

1uF 6.3V

C27

1uF 6.3V

U5

USBUF02W6

U5

USBUF02W6

D1
1

Grd2

D23 D3 4

3.3V 5

D4 6

R23
1M
R23
1M

TY

TP Yaw_OUT

TY

TP Yaw_OUT

C17

12 pF

C17

12 pF

R35
10k
R35
10k

C13
10nF

C13
10nF

R72 56RR72 56R

C21
4.7nF
C21
4.7nF

R81

1M

R81

1M

T4

TP LPR_Vref

T4

TP LPR_Vref

C65
1uF
C65
1uF

R25

4.7k

R25

4.7k

C53
470nF
C53
470nF

R89

0R

R89

0R

Y3

8MHz

Y3

8MHz

U15 LD3985M18RU15 LD3985M18R

VIN1

G
N

D
2

IN
H

3
B

Y
P

S
4

VOUT 5

U14

EMIF06-MSD02N16

U14

EMIF06-MSD02N16

WP/CD1

RDAT3_GND2

DAT2_In3

DAT3_In4

CMD_In5

CLK_In6

DAT0_In7

DAT1_In8 DAT1_Ex 9

DAT0_Ex 10

CLK_Ex 11

CMD_Ex 12

DAT3_Ex 13

DAT2_Ex 14

VCC 15

RDATA_VCC 16

G
N

D
17

C59
470nF
C59
470nF

TG

TP Ground

TG

TP Ground

D2

SMTY5.0A

D2

SMTY5.0A

1
2

J4

RS232

J4

RS232

1 2
3 4
5 6

R88 0RR88 0R

R33
10k
R33
10k

R26

4.7k

R26

4.7k

CN2 microSDCN2 microSD

DAT2 1
CD/DAT3 2

CMD 3
VDD 4
CLK 5
VSS 6

DAT0 7
DAT1 8

U10 LDS3985M33RU10 LDS3985M33R

VIN1

G
N

D
2

IN
H

3
B

Y
P

S
4

VOUT 5

C52
100nF
C52
100nF

C40

10uF 6.3V

C40

10uF 6.3V

C48

2.2uF

C48

2.2uF

R87

0R

R87

0R

R70

0R

R70

0R

1
2

3

S4

SWITCH 1X2

S4

SWITCH 1X2

12
3

R28

4.7k

R28

4.7k

C62

10nF

C62

10nF

C63

10nF

C63

10nF

R79
10K

R79
10K

C42
1uF
C42
1uF

R/C1
R 0 / C 4.7uF
R/C1
R 0 / C 4.7uF

R21
10K
R21
10K

R29100 R29100

CN1

U
S

B
_m

in
iB

CN1

U
S

B
_m

in
iBVBUS1

DM2

DP3

ID nc4

GND5

SHELL6

SHELL7

SHELL8

SHELL9

JP1 JUMPERJP1 JUMPER
12

R27

4.7k

R27

4.7k

R85
1M

R85
1M

R/C3
R 0 / C 4.7uF
R/C3
R 0 / C 4.7uF

R77

0R

R77

0R

1
2

3

C46
100nF
C46
100nF

C43
2.2uF 6.3V

C43
2.2uF 6.3V

U12

LY330ALH

U12

LY330ALH

V
D

D
1

S
T

2

V
C

O
N

T
3

G
N

D
4

RES5 OUTZ 6

VREF 7

P
D

/S
le

ep
8

V
D

D
9

RES10

R
84

0R
R

84
0R

R32 100R32 100

RST

SW PUSHBUTTON-DPST

RST

SW PUSHBUTTON-DPST

R31 100R31 100

C34
100nF
C34

100nF

C19
100nF
C19

100nF

L2 30 Ohm 3AL2 30 Ohm 3A
1 2

U6

STM32F103RET7

U6

STM32F103RET7

V
B

A
T

1

PC13-TAMPER-RTC 2

PC14-OSC32_IN3

PC15-OSC32_OUT4

PD0 OSC_IN5

PD1 OSC_OUT6

NRST7

PC0 8
PC1 9
PC2 10
PC3 11

V
S

S
A

12
V

D
D

A
13

PA0-WKUP14

PA115

PA216

PA317

PA420

PA521

PA622

PA723

V
ss

_4
18

V
dd

_4
19

PC4 24
PC5 25

PB026

PB127

PB2-BOOT128

PB10 29
PB11 30

V
ss

_1
31

V
dd

_1
32

PB12 33
PB13 34
PB14 35
PB15 36

PC6 37
PC7 38
PC8 39
PC9 40

PA841

PA942

PA1043

PA1144

PA1245

PA13-JTMS 46

V
ss

_2
47

V
dd

_2
48

PA14-JTCK 49
PA15-JTDI 50

PC10 51
PC11 52
PC12 53

PD2 54
PB3-JTDO 55

PB4-JNTRST 56

PB557

PB658

PB759

PB861

PB962

BOOT060

V
ss

_3
63

V
dd

_3
64

C49

2.2uF

C49

2.2uF

R75

27k

R75

27k

C56

10uF 6.3V

C56

10uF 6.3V

R/C2
R 0 / C 4.7uF
R/C2
R 0 / C 4.7uF

R6
10k
R6
10k

C25
100nF
C25
100nF

C47
100nF
C47

100nF

C64
33nF

C64
33nF

U2

STLM75DS2F

U2

STLM75DS2F

SDA1

SCL2

nOS/INT3

GND4 A2 5

A1 6

A0 7

VDD 8

R22
10K
R22
10K

C1
100nF
C1
100nF

C16

12 pF

C16

12 pF

C22
100nF
C22

100nF

R44 10kR44 10k

D3

RED

D3

RED

T2

TP LYaw_Vref

T2

TP LYaw_Vref

U11

LSM303DLH

U11

LSM303DLH

R
E

S
1

G
N

D
2

R
E

S
3

SA0_A4

R
E

S
5

V
D

D
6

R
E

S
7

N
C

8

N
C

9

RES10

RES11

SET212

RES13

R
E

S
14

C115

SET116

R
E

S
17

DRDY_M 18

SDA_M 19

SCL_M 20

V
D

D
_D

IG
_M

21

V
D

D
_I

O
_A

22

R
E

S
23

SCL_A 24

SDA_A 25

INT1 26

INT2 27

R
E

S
28

C55

10nF

C55

10nF

Y1 32.768 kHzY1 32.768 kHz

1 2

4 3

C66
10nF

C66
10nF

C57
100nF
C57
100nF

R30100 R30100

R78

0R

R78

0R

1
2

3

C20

1uF 6.3V

C20

1uF 6.3V

R74 10KR74 10K

D4

GREEN

D4

GREEN

TR

TP PR_X_OUT

TR

TP PR_X_OUT

C50 10nFC50 10nF

SW2

SW PUSHBUTTON-DPST

SW2

SW PUSHBUTTON-DPST

R86

0R

R86

0R
R36
10k
R36
10k

R76
1M

R76
1M

R73 56RR73 56R

C35
100nF
C35

100nF

C45

10uF 6.3V

C45

10uF 6.3V

C51

10uF 6.3V

C51

10uF 6.3V

C44
100nF
C44
100nF

C24
100nF
C24
100nF

U9

LPS001DL

U9

LPS001DL

CS1

SCL2

G
N

D
3

SDA/MOSI4

SA0/MISO5

INT1 6

INT2 7

RES 8

GND 9

R
E

S
10

R
E

S
11

G
N

D
12

V
D

D
_I

O
13

R
E

S
14

V
D

D
15

V
D

D
16

C26
100nF
C26

100nF

R80

27k

R80

27k

R
82

0R
R

82
0R

C58 10nFC58 10nF

R69

10K

R69

10K

C29
100nF
C29

100nF

J1J1

1
2

J8

COMM. 2x5

J8

COMM. 2x5

1 2
3 4
5 6
7 8
9 10

R34
10k
R34
10k

TP

TP PR_Y_OUT

TP

TP PR_Y_OUT

C41
100nF
C41
100nF

C23
10uF 6.3V
C23
10uF 6.3V

J7

SWD/JTAG

J7

SWD/JTAG

12
34
56
78
910

Figure 8: STEVAL-MKI062V2 data sheet

14

