
Nom : Moctar Ba
Filière : SICOM
Année scolaire : 2015 – 2016
Institution : INRIA (Institut national de recherche en informatique et en
automatique)

Monitoring sur plateforme IoT-Lab

Maître de stage : Frédéric Saint-Marcel
Courriel : f rederic.saint-marcel@inria.fr

1

mailto:frederic.saint-marcel@inria.fr
mailto:frederic.saint-marcel@inria.fr

Contents

Introduction

I . What is IoT-Lab ?

II. What is an IoT-Lab node ?

1. General view
2. M3 node
3. A8 node

III. Internship work Part I : monitoring tools

1. Goals
2. First step : understanding the IoT platform as a user
3. Second step : setting up the development environment and getting used
 to it
4. Third step : writting the monitoring software

IV. Internship work Part II : correcting the clock drift

1. Correcting the constant clock drift
2. Use of a better frequency
3. Use of set_time command

Takeaways
Going forward
Summary
Annex

2

Introduction

INRIA (Institut national de recherche en informatique et en automatique) is a
French national research institution focusing on computer science and its
applications. I spent my internship in the SED (Service d'Experimentation et de
Développement), which goal is to assist researcher by setting up experiments
and developing software solutions.
I joined the team responsible for the IoT-Lab: an experimental plateform for
researchers to run experiments on the Internet of Things.

« The internet of things (IoT) is the internetworking of physical devices, vehicles,
buildings and other items—embedded with electronics, software, sensors,
actuators, and network connectivity that enable these objects to collect and
exchange data. » Wikipedia

I worked on the monitoring tools of the platform. Each embedded device in the
IoT network can be monitored by an external device: however, the clock of the
monitoring device is not synchronized correctly and large time differences can
appear. This is a serious problem as knowing exactly when an event occured in a
network is essential.

This report contains an overview of the Iot-lab platform, a more in depth
explanation of the problem, and lists the solutions used to solve it.

3

I . IoT-lab : a large scale testbed

IoT-lab (www.iot-lab.info) is a large scale network of wireless sensors nodes
equiped with tools to experiment on them. There 2728 wireless sensor nodes
located at six differents sites in France : Inria Grenoble (928), Inria Lille (640),
ICube Strasbourg (400), Inria Saclay (307), Inria Rennes (256) and Institut Mines-
Télécom Paris (160). Most nodes are in a fixed location, however nodes can be
located on a moving robot.

Each site has it’s own nodes with an unique topology : the purpose is to enable
users, mainly researcher and companies, to experiment on a physical sensor
network. Complete access to each node is given : users can develop and flash
new firmwares on the nodes, monitor nodes energy consumption, temperature,
radio communication and network-related metrics. The facility offers quick
experiments deployment, along with easy evaluation, results collection and
analysis. Defining complementary testbeds with different node types, topologies
and environments allows for coverage of a wide range of real-life use-cases.

A robot transporting nodes in Lille

4

http://www.iot-lab.info/

IoT-LAB is part of the FIT experimental platform, a set of complementary
components that enable experimentation on innovative services for academic
and industrial users. The project gives French Internet stakeholders a way to
experiment with mobile wireless communications, both on network and
application layers, thereby accelerating the design of advanced networking
technologies for the Future Internet

II . What is an IoT-Lab node ?

1. General view

A node is simply an embedded computer with sensors that allows it to retrieve
measures from the environnement and a radio chip for communications. Just like
any other computer, it is mainly comprised of one or two microprocessors. The
microprocessors used are the ARM Cortex M3 and ARM Cortex A8. Each node
comes with a radio interface and standard sensors.

An IoT-LAB node consists of three main components : an open node, a gateway
and a control node. The gateway and control node are part of the host node :
they are not accessible by the user.

5

The open node is fully open and the user is granted a full access to the memory.
This implies that he can load and run any operating system. This feature is
handled using a remote access to reboot and (re)load any firmware on any node.

The gateway offers a connection to the global IoT-Lab servers and infrastructure
(network).

The control node is used to interact, passively or actively, with the Open Node.
It monitors the consumption and the radio activity (RSSI) of the open node during
experiments and selects power supply (battery or PoE).

Node board (gateway + control node)

There are two generations of nodes : the M3 node, named after it’s main
microprocessor (cortex M3) and the A8 node (cortex A8).

6

2. M3 node

The M3 node contains one microprocessor : an ARM Cortex-M3. The Cortex-M3 is
not powerful enough to run high-level operating systems but it can run
embedded operating systems like FreeRTOS and Contiki.
Cf. Annex « Architecture of an M3 node » for more details.

Data Sheet of the M3 node

MCU ARM Cortex M3, 32-bits, 72 Mhz, 64kB RAM – ST2M32F103REY

sensors

• Ambient sensor light – ISL29020
• Atmospheric pressure and temperature – LPS331AP
• Tri-axis accelerometer/magnetometer – L3G4200D
• Tri-axis gyrometer – LSM303DLHC

radio communication 802.15.4 PHY standard, 2.4 Ghz – AT86RF231

external memory 128 Mbits external Nor flash – N25Q128A13E1240F

LEDs green, red, blue

power 3,7V LiPo battery, 650 mAh – GMB 063040

Operating-Systems FreeRTOS, Contiki, Riot

M3 Open Node design

7

3. A8 node

The A8 node is the most powerful one witch a clock speed of 600 Mhz and a
memory of 256 MB. It can run high-level operating systems like embedded Linux
unlike the M3 node. It contains an ARM Cortex-A8 and a co-microcontroller ARM
Cortex-M3 : the Cortex-M3 gives access to sensors (tri-axis gyro and
accelerometer/magnetometer), wireless communication while the Cortex-A8 runs
the higher level features – flashing firmwares and accessing the M3 node serial
port. Cf. Annex « Architecture of an A8 node » for more details.

Data sheet of the A8 node

System on Module High-performance ARM Cortex-A8 microprocessor, 600 Mhz, 256
MB – Variscite VAR-SOM-AM35 CPU

co-microcontroller

MCU ARM Cortex M3, 32-bits, 72 Mhz, 64kB
RAM – ST2M32F103REY

sensors

• Tri-axis
accelerometer/magnetometer –
L3G4200D

• Tri-axis gyrometer – LSM303DLHC

radio
communication

802.15.4 PHY standard, 2.4 Ghz
AT86RF231

LEDs green, red, blue

control USB device to control UART and JTAG –
FTDI2232H

power 3,7V LiPo battery, 650 mAh – GMB 063040

option GPS device – MAXQ

links Ethernet, USB

operating-system Linux

A8 open node design

8

III. Internship work Part I : monitoring tools

1. Goals

When the control node monitors values like radio or energy consumption, it
always involves time : it must report a timestamp of the measure. This time
must be as precise and accurate as possible because a correct ordering of events
and a precise timestamp allows the user to make much better experiments and
tests.

However, these timestamps are not accurate : the internal clock of the control
node, which is also an M3 co-microcontroller, is not synchronized with the
gateway time which is itself synchronized with the UTC time via NTP. The control
node clock drifts at a rate of 0.4 seconds per hour which is very high considering
the nodes can be up for weeks : it becomes simply impossible to have any
reliable time values. Moreover, each control node seems to have it’s own clock
drift : ideally, all the control nodes should be perfectly synchronized during an
experiment on the testbed.

The goal of the internship is to :

• Develop precise monitoring software that can track and record the clock
drift of each control node : this allows to validate or invalidate any solution
to the problem, and quantify precisely by how much the clock drift is
reduced by the solution

• Assess quantitatively the clock drift at the beginning of the internship and
think of a possible solution depending on the type of drift

• Implement a software solution
• Write tests for the software and validate the solution by using the

previously developed tools.

All the work is done on a test platform (called devgrenoble site) : just like other
sites, it contains a set of nodes. However, these nodes are not accessible to
users : their goal is to allow the developers of the IoT-Lab team to test new
software and modifications without altering the users experiments.

2. A first step : understanding the IoT platform as a user

At the beginning of the internship, I had to follow tutorials (https://www.iot-
lab.info/tutorials/) on how to use IoT-Lab : these are the same tutorial any
researcher would follow if he wanted to learn how to use IoT-Lab. This step is very
important : understanding the user interface allows to make better decisions
when modifying the back end code.

A user can submit an experiment on the testbed and reserve nodes for a given
time. It can be done through a web portal or a command line interface (frontend
SSH) using a REST API. The gateway server, different from the gateway of a
node, is a Linux server that has access to the nodes of the site : it is a frontend
from which the nodes can be controlled. For example, users can interact with the
serial port of a node and access monitoring data through the frontend. The

9

monitoring data is generated by the gateway of the node on the frontend with an
OML library. OML is a file type and a measurement library
(https://mytestbed.net/projects/oml) for storing raw data. It uses its own XML
format.

Architecture of an IoT-Lab site

My first task was to to write a python script, running on the SSH frontend, that
made the running open node firmware automatically ask to every control node
it’s time every second and then compared this time to the time of the frontend
SSH. This tool showed that the drift was around 0.4 seconds per hour, however
there were two small problems that made it slightly inacurrate. First, there is a
delay between the moment the scripts asks a node for it’s current time, and the
moment the scripts receives the time. Second, the time of the frontend, which is
used as a basis to compute the clock drift of each control node, is itself
inaccurate because it uses a time synchronization protocol called NTP that does
not allow to reach the levels of precisions wanted.

3. A second step : setting up the development environment and
getting used to it

The IoT-Lab team uses a development environment centered around Linux and
git.

Linux is self-exlpanatory : it is an open source, secure and highly efficient
operating systems well suited for development endeavors.

Git is the version control software : the source code of all the Iot-Lab projects is
stored in a central repository accessible from a private repository in Github. Only
Iot-Lab approved member can access the source code. Git allows to get a local

10

copy of the repository, make local modifications and submit them while keeping
track of the history of changes. It is then easy to come back to an earlier version
if a bug or mistake happens.

Testing is another important part of the environment : new code must be
thoroughly tested to ensure it works correctly. I had to learn how to write test
code and check that they cover all the appropriate cases.

Iot-Lab uses many programming langages but I mainly worked with C and
Python. I already knew these langages so I didn’t have to learn them from
scratch. C is the langage used for the operating system of the control node : most
of the work I did was to modify this operating system. It is also used for the serial
interface : a program that defines a communication protocol via a serial port.
Python is mostly used for the gateway code, monitoring tools and scripts
between the gateway and the control node.

IoT-Lab node software architecture

4. A third step : writting the monitoring software

Before I got to dive on the control node operating system source code, I had to
develop a monitoring software to make a precise quantitative assesment of the
clock drift : the goal was to correct the flaws of the first python script.

The second version involved more work but corrected these two issues with a
single solution : the use of a GPS on A8 nodes. A GPS can give the current time

11

with near perfect precision. Since some nodes have a GPS connection, I used
them to get a precise measure of the clock drift. I had to modify the control node
operating system so that it would active the GPS PPS (pulse par second) which
is a signal sent by the GPS every second. It sends a packet containing the node’s
time each time a GPS signal is received to the gateway. Then the raw data from
these packets is extracted and saved in an OML file. The packets were sent to a
serial port and processed by a software called serial interface. I modified the
interface so it could support this new kind of packet and store them in a file so
that the clock drift data could be processed.

The last component of the monitoring software is a python script executed on the
SSH frontend that processes the clock drift data of each node : the script takes
as input the raw file that contains the data from the received packets. Then it
computes the clock drift of each node and some statistics about it before plotting
the clock drift as a function of time.

Once the tool was ready, it was run on the A8 nodes of the devgrenoble site : a
set of nodes only accessible to the IoT-Lab team for testing purposes. The goal
was to learn more about the shape and characteristics of the clock drift before
trying to find a fix.

Quantitative analysis of the clock drift on each A8 node on the devgrenoble site :

12

The clocks of the A8 nodes each have a time drift of around 117 ppm
(microsecond per second). This drift is much higher than the expected
drift of an ordinary quartz clock (around 1 ppm per °C).

Some statistics on the clock drift:
Node name: drift (ppm)

A8-60: 115.541484716
A8-53: 118.041509434
A8-56: 117.355212355
A8-61: 118.297297297
A8-50: 116.712195122
A8-59: 115.07804878
A8-54: 117.107266436
A8-62: 115.505660377

Mean: 116.704834315
Std: 3.21643711418
Spread: 2.75604445442%

13

IV. Internship work Part II : correcting the clock drift

1. Correcting the constant clock drift

As seen in the clock drift statistics, the drift has two components: a constant one
of around 120 ppm common to all the clocks and another drift between each M3-
node clock with a spread of around 6 ppm.

The M3 nodes come with a complete time library. Before correcting the clock
drift, this time has to be updated and fixed as it has a few bugs and is not
efficient. It is written with very low level code that does a few things: it picks up
the processor timer, transforms it into a real time, handles the timer overflows
and configures a quartz frequency among other things. The code was written for
32 bits and had to be modified to handle 64 bits timers as they overflow less
frequently.

The time library works this way : a quartz frequency is configured at 32678 Hz
and a timer tick count is established. This means that the timer tick goes up by

1 every
1

32768
second. It is then possible to compute the time in seconds by

using the following formula.

Time=
Timerticks

Quartz Frequency

However, the configured quartz frequency still relies on the physical frequency of
the M3-nodes processors which is 72Mhz. Since the configured quartz has a
frequency of 32678 Hz, the processor frequency is not a multiple of the quartz
frequency. Hence, every time we make an integer divide with the two (to update
the timer tick), a small error is made that creates the constant drift:

72000000
32678

=2197 (Integer divide)

72000000
32678.

=2197.265625 (float divide)

So in reality, the clock behaves as if it's frequency is:
32768 * (72000000 / 32768.) / (72000000 / 32768) = 32771.96176604461

This can be fixed with a workaround: changing the Quartz Frequency in the Time
formula by dividing the timer tick with 32772 (a close approximation of
32771.96176604461) instead of 31678. Once this is done, we get an error of 5

14

ppm instead of 120 ppm. We can further reduce the ppm by using a more precise
approximation of 32771.96176604461. In the time library, no float or double
elements are used because the embedded processor does not have a floating
point unit unlike desktop processors. This means that floating point operations
are expensive : it is better to use an integer.

Drift of A8 nodes after correction of constant drift

Drift microseconds / second:

A8-62: -6.65397923875
A8-54: -5.06920415225
A8-60: -6.4787644787
A8-56-: -4.84132841328
A8-53: -4.16605166052
A8-61: -3.71586715867
A8-50: -5.30115830116

Mean: -5.17519334334
Std: 2.67818445026
Spread: -51.7504230775%

15

The error is reduced by around 120 ppm as predicted. Next, a more precise
frequency is implemented : the time library is modified so that it can use a
frequency of 32771.962 instead of 32772. To do this without using a float, we
introduce an intermediate variable which value is 32 771 962 and multiply by
1000 the timer before each division. The end results is the same as if the
frequency was 32771.962 but no floating point operation is made.

Clock drift on A8 nodes with a more precise theoretical frequency

Here we have the clock drift on A8 nodes after we use the more accurate
theoretical frequency of 32771.962 Hz The mean drift is now -4.25 ppm which is
better than -5.17 ppm obtained by using the rounded frequency of 32772 Hz.
However, the mean drift is still high: the next step is to compute a practical
frequency which puts this mean drift closer to zero.

Drift microseconds / second:

A8-54: -3.90657439446
A8-61: -2.66789667897
A8-53: -2.98867924528
A8-60: -5.32046332046

16

A8-62: -5.49134948097
A8-56: -3.67924528302
A8-59-: -5.75138121547
A8-50: -4.25868725869
Mean: -4.25803460967
Std: 3.07867307384
Spread: -72.3026784904%

2. Use of a better frequency

After assessing the mean drift of around 5 ppm with the theoretical frequency of
32771.962 Hz, we adjust it to further reduce the mean drift. Since we want a
mean drift of 0 ppm, we can use the following formula to compute what
frequency we should use to obtain it :

Correct Frequency=Incorrect Frequency×(1−drift per second)

With an Incorrect Frequency of 32771.962 and a correspond drift per second of
-4.25 ppm :

32771.962×(1−4.25∗10−6
)=32771.821

After a simple computation, we find it to be 32771.823 Hz. The mean drift is now
0.17 ppm which is much better than the original 120 ppm. The current clock drift
is now very small, however we still haven’t fixed the variable drift between each
node that has a standard deviation of 2.94. This is much better but still leaves us
with a drift between the nodes that must be corrected with a synchronization
protocol.

17

Clock drift microseconds / second:

A8-50: 0.0627802690583
A8-56: 0.657243816254
A8-61: 1.62544169611
A8-53: 1.3038869258
A8-59: -1.55958549223
A8-62: -1.23320158103
A8-54: 0.332179930796

Mean: 0.169820794966
Std: 2.93932908255
Spread: 1730.84166939%

3. Use of set_time command

The following synchronization protocol is implemented : a periodic set_time
command is set up from the gateway python code: every minute a set_time
command with the current gateway time is sent to the control node so it can

18

synchronize its time with the gateway. The goal is to synchronize each control
node so that the variable drift (2.94 standard deviation) is reduced.
The time library is modified once more so that the clock frequency of each control
node is dynamically updated after each set_time command to correct its drift on
the go : the update takes into account the error that occured since the last
update and computes a new clock frequency to adjust the control node’s clock. A
packet is sent from the control node to the gateway after each set_time : the
packet contains the current frequency, when the last set_time operation took
place and the value of the clock correction made by the set_time. The packet
values are stored via OML : this allows to have a complete log of the clock
behaviour during an experiment.

We can see the effect of set_time: the time drift has a periodic shape that
converges toward the correct time. This is because of NTP : as said before, the
gateway time is synchronized to UTC via NTP so it is expected that the control
node time, which is itself synchronized to the gateway, has the shape of the NTP
time.

19

Takeways

The goal of the internship was to develop monitoring tools for the clock
drift on the control node and then fix the clock drift. In order to accomplish
this task, I had to understand how IoT-Lab works and get familiar with the
already existing development environment and source code. Writting new
software for an already large project requires respect of coding
conventions and extensive testing. I was able to write a program that
automatically provided a quantitative assesment of the clock drift on each
control node. Then I took steps to fix it : first by modifying the clock
frequency and how it is handled and then by using a set_time command
that sends the current time to the control nodes. The IoT-Lab team now
has a way to monitor the time in the control node and a much better
control node clock. At the beginning, the clock had a drift of 400
milliseconds per hour (120 ppm) meaning it would report an error of 9.6
seconds after only one day. Now, the mean drift is of 0.6 millisecond per
hour. And with the use of the periodic set_time command, the error can be
reset periodically.

The work I had to do made me learn a lot and allowed me to extensively
practice my skills in software development, working and interfacing with
hardware materials and efficiently using the software engineering tools
that are found in most work environments.

I want to thank Frédéric Saint-Marcel, my internship tutor, for providing me
with such a valuable experience. I also want to thank Gaëtan Harter for all
the technical help and guidance he provided.

Going Forward

In this section I briefly explain some steps that could be taken to improve
the work.

The set_time command synchronizes the time of the control node with the
time of the gateway. However, the gateway uses NTP which can report a
big time error when the network becomes busy. To make better use of the
set_time command, it would be beneficial to use an other time protocol
like PTP on the gateway.

Another possible improvement is to give NTP packets a higher priority so it
is not affected by a surge of network activity.

20

Annex : Achitecture of an A8 node

21

Annex : Architecture of an M3 node

22

Abstract

IoT-Lab is a platform of wireless sensor nodes desgined for experimenting and
testing purpose. Researchers and users can test their Internet Of Things models
on a physical platform.

Each node is monitored by a device called control node : this device time is
incorrectly synchronized. After developing time monitoring software, it is found
that each control node has its own time drift. However, they all share a constant
drift. The mean clock drift is of 120 ppm (parts per million e.g. microseconds /
second) : in an hour the clock drifts by 400 milliseconds.

To correct the constant and variable drift, the time library of the control node is
updated in order to correct bugs and upgrade some parts of the library to make
them more reliable. The constant drift is corrected by modifying the timer
frequency of the clocks while the variable drift is corrected by using a
synchronization protocol that updates the time of each control node every
minute. In the end, the drift is of 0.17 ppm or of 0.6 ms per hour.

Résumé

IoT-Lab est une plateforme de nœuds capteurs sans-fil mise en place à des fins
d’expérimentation et de test. Chercheurs et autres utilisateurs peuvent
implémenter leur modèle Internet Of Things sur une plateform physique réelle.

Chaque nœud est monitoré par un appareil appelé control node : le temps de cet
appareil n’est pas correctement synchronizé. Après développement d’un logiciel
pour monitorer le temps, il est remarqué que chaque control node à sa propre
dérive temporelle. Cette dérive se sépare en une dérive constante qui leur est
commune et d’une dérive variable propre. La dérive temporelle moyenne est de
120 ppm (partie par million e.g. microsecondes / seconde) : en une heure
l’horloge dérive de 400 millisecondes.

Pour corriger la dérive, la libraire interne de temps du control node est mise à
jour afin de corriger des bugs, mettre à niveau certaines parties pour les rendre
plus robustes et fiables. La dérive constante est corrigé en modifiant la fréquence
du timer des horloges alors que la dérive variable est corrigé en mettant en place
un protocol de synchronisation qui met à jour le temps de chaque control node
chaque minute. On obtient alors une dérive moyenne de 0.17 ppm our 0.6
millisecond par heure.

23

