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Abstract Mesh partitioning and
skeletonisation are fundamental
for many computer graphics and
animation techniques. Because of
the close link between an object’s
skeleton and its boundary, these
two problems are in many cases
complementary. Any partitioning of
the object can assist in the creation of
a skeleton and any segmentation of
the skeleton can infer a partitioning
of the object. In this paper, we
consider these two problems on
a wide variety of meshes, and strive to
construct partitioning and skeletons
which remain consistent across
a family of objects, not a single one.
Such families can consist of either
a single object in multiple poses and
resolutions, or multiple objects which
have a general common shape.
To achieve consistency, we base

our algorithms on a volume-based
shape-function called the shape-
diameter-function (SDF), which
remains largely oblivious to pose
changes of the same object and
maintains similar values in analogue
parts of different objects. The SDF
is a scalar function defined on the
mesh surface; however, it expresses
a measure of the diameter of the
object’s volume in the neighborhood
of each point on the surface. Using
the SDF we are able to process and
manipulate families of objects which
contain similarities using a simple
and consistent algorithm: consistently
partitioning and creating skeletons
among multiple meshes.

Keywords Mesh decomposition ·
Skeleton extraction · Geometry
processing

1 Introduction

Partitioning of 3D meshes and extracting a skeleton-like
structure for such meshes are two basic and highly im-
portant algorithms in computer graphics. Most previous
partitioning and skeletonisation techniques concentrated
on one object and rely mostly on surface attributes of the
object’s boundary. These include curvature, normal direc-
tions and average geodesic distances (AGD is defined as
the integral over the whole surface of the geodesic dis-
tance of a point on the surface to all other points). Such
surface attributes often depend on the pose of the ob-
ject and on its topology; therefore, it may change, for
instance, if the pose of the object changes. This, in turn,

often leads to different results of partitioning or skeleton-
isation of similar objects. In contrast, one of the attributes
that remains invariant under pose and often even topology
changes is the volume of the object.

Still, the dominating representation of 3D objects in
graphics is a 2D surface mesh embedded in 3D, defin-
ing its boundary. Therefore, in our approach we employ
the shape-diameter function (SDF, Fig. 1a), that provides
a link between the object’s volume and its boundary, map-
ping volumetric information onto the surface boundary
mesh.

The geometric intuition behind the SDF is to create
a kind of low pass filtering to a shape-diameter meas-
ure by examining the diameter in the neighborhood of
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Fig. 1a–c. The local shape diameter function (SDF) provides a link from the surface of the mesh to its volume. a A color map of the
function values on the mesh from red (narrow diameter) to blue (wide diameter). The SDF is related to the medial axis transform and can
be used to find a consistent hierarchical partitioning of objects (b) and to create simple robust skeletons (c)

each point on the surface. This measure relates to the me-
dial axis transform (MAT) [4]. However, computing the
medial axis and the MAT of a surface mesh can be an ex-
pensive process, and the medial axis itself is difficult to
handle [1, 9]. In general, the medial axis of a 3D object is
a collection of non-manifold sheets and does not resemble
a one-dimensional curve skeleton, which is often sought
after in graphics and animation. Still, the connection from
the boundary to the axis using local shape-radius in the
MAT is extremely informative for partitioning, skeletoni-
sation and manipulation. Therefore, in the SDF we replace
the local shape-radius by a measure of the local shape-
diameter, which is simpler and faster to compute.

In this paper we concentrate mostly on families of ar-
ticulated objects, although other types of objects can ben-
efit from SDF analysis as well (Fig. 16). This can include
human and animals figures, or more generally, objects rep-
resenting characters used in animation and graphics. We
present the algorithms to partition such objects to parts
consistently and to extract their simple one-dimensional
curve skeletons (Fig. 1b,c). These algorithms are consis-
tent as they are largely insensitive to pose changes of the
same object, and furthermore, they present similar results
in analogue parts of different objects. Moreover, as the
SDF is a simple scalar field, both partitioning and extract-
ing a skeleton are implemented as very simple and fast
algorithms, allowing greater interactivity and ease of use.

2 Related work

Many previous geometry processing algorithms are based
on attributes obtained from surface 3D models (polyg-
onal meshes). Particularly, the use of surface geometric
attributes is still the most prevalent in works targeting par-
titioning of meshes to parts (See [27] for a survey on
partitioning techniques). These attributes include curva-
ture and geodesic distances [13, 16, 21, 25, 26, 37], dihe-
dral angles [28], planarity and normal direction [3, 5], slip-
page [10] etc. Such attributes are sensitive to local surface
features and to pose changes. Therefore, they are not suit-
able for linking between the same object in different poses

or for finding analogies between different objects con-
sistently. Topology-based approaches as in [24], spectral
analysis as in [20], and global attributes such as average
geodesic distance (AGD) [11] and Reeb-graphs [2] can
support some level of consistency over pose differences
of the same shape. Nevertheless, they are vulnerable to
topological and connectivity changes and do not distin-
guish well between shape differences. Geodesic distances
are sensitive to shape changes even in remote parts, and
the topology may be altered considerably if the geometry
is changed slightly by connecting or disconnecting parts.

Our approach focuses on the consistency over a family
of objects; it is insensitive to topological changes and sim-
ple in terms of computation. Furthermore, we also demon-
strate consistency across families of different objects. We
base our work on the definition of the shape diameter func-
tion (SDF), exploring the connection from the mesh to
the volume of the object instead of on surface attributes.
Other methods which use this connection include [3] in
which geometric primitives are fitted to the mesh to parti-
tion the object, and [23] in which the partitioning is based
on blowing a spherical bubble at each vertex and study-
ing how the intersection of that bubble with the surface
evolves. Recently, in [14] a meaningful part decompos-
ition is achieved using an approximate convex decompos-
ition. Each model is partitioned hierarchically, attempting
to preserve part convexity and compactness. A later step
finds the best part correspondence between a group of
models.

Several works explore the strong connection between
part-partitioning and skeletonizing [19, 22, 30, 31, 34]. In
[30] feature points are extracted from a mesh, and are
used to calculate an invariant mapping function, reveal-
ing important parts in the mesh. Geometrical and topo-
logical analysis using Reeb graphs enable the authors to
extract a visually meaningful skeleton. This skeleton was
employed in a follow-up work [31] to calculate a hier-
archical segmentation. In [13] object part decomposition
facilitates the definition of a skeleton, which in turn is used
for deformations and animation. In a later work [12] multi-
dimensional scaling is used to create a pose-oblivious
representation of the mesh, which is used to find fea-
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ture points and perform a hierarchical decomposition.
In [19] an iterative procedure is used, simultaneously per-
forming an approximate convex decomposition of the ob-
ject [18] and extracting a skeleton using the principal axis
of each part. The procedure is repeated until the skele-
ton is of satisfactory quality. In [32] skeletal curves are
constructed from scattered points on the surface of an
object. The procedure involves expensive construction of
a nearest-neighbors and geodesic distances graphs, and
produces a tree-like structure which approximates the ob-
ject’s skeleton.

The two leading approaches for defining skeletons are
based either on the MAT or voxelization. The MAT-based
approach such as [8] gives a high level of accuracy, yet
the MAT is a complex non-manifold structure, which is
difficult to extract and hard to manipulate and utilize.
Voxelization techniques such as in [29, 36] create a dis-
crete approximation. These techniques are prone to dis-
cretization errors and rely heavily on the grid size. A re-
cent method for skeleton extraction combined several ap-
proaches by first extracting feature points of the skeleton,
mapping them to the surface and then linking the surface
partitioning to create the domain connected graph of an
object [34]. Nevertheless, such techniques are cubic in na-
ture while the SDF maps a description of the volume to the
surface, therefore presenting 2D complexity.

3 The shape diameter function

An effective link from the object’s volume to its sur-
face boundary is provided by the medial axis transform
(MAT) [4] of the object. The MAT represents an object
by the distance of each point to the medial axis. The dis-
tance from a point on the boundary to the medial axis
is the radius of the maximal ball, whose center lies on
the medial axis, touches the boundary at the point, and
is completely contained in the object. This ball is called
the medial ball, and its radius can be seen as a form of
local shape radius connecting the boundary to the me-
dial axis. Nevertheless, the definition and extraction of
the medial axis or even of discrete approximations using
skeletons are complex and often error prone. Instead, we
define a measure, which is much simpler to compute, that
connects the local shape’s volume to the surface by meas-
uring the shape diameter.

Fig. 2. The shape diameter-function remains largely consistent through pose differences of the same object

Let M be a manifold mesh surface defining a volu-
metric object. We define a scalar function on the surface
fv : M → R which we call the shape diameter function
(SDF) as the neighborhood diameter of the object at each
point p ∈ M. On a smooth surface the exact diameter can
be defined by the distance to the antipodal surface point
using the inward-normal direction. On a piecewise linear
mesh, it is difficult to define the exact antipodal point.
Moreover, we want to express the neighborhood shape
diameter, which is different than the exact distance to the
antipodal point.

Given a point on the surface mesh, we use a cone
centered around its inward-normal direction (the oppo-
site direction of its normal), and send several rays inside
this cone to the other side of the mesh (Fig. 3). For each
such ray we check the normal at the point of intersection,
and ignore intersections where the normal at the inter-
section points in the same direction as the point-of-origin
(the same direction is defined as an angle difference less
than 90◦). This is done to remove false intersections with
the ‘outside’ of the mesh. The SDF at a point is defined as
the weighted average of all rays lengths which fall within
one standard deviation from the median of all lengths.
The weights used are the inverse of the angle between the
ray to the center of the cone. This is because rays with
larger angles are more frequent, therefore having smaller
weights.

This definition of the SDF is invariant to rigid body
transformations of the whole mesh. Furthermore, the SDF
is oblivious to any deformation that does not alter the vol-
umetric shape locally. This includes articulated character
deformations, skeleton-based movements or piecewise-
rigid transformations. In essence, the SDF remains largely
pose oblivious (Fig. 2).

Using a small cone angle will not create a good dis-
crimination between different object parts and would be
too sensitive to local features of the mesh. On the other
hand, using a large opening angle, close to 180◦, exposes
the SDF measure to noise and errors as some of the rays
find their way to unrelated parts of the model. We have
tested the effect of various parameter settings on the con-
sistency of the SDF on over 1000 meshes: using different
opening angles and various number of rays. In practice,
we set the default values to an opening angle of 120◦
and send 30 rays per point, relieving the user from any
parameter tuning. Although we combine the results from
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Fig. 3. Examples of the cone of rays sent to the opposite side of
the mesh (left). Green rays are within accepted range of the median
while red rays are rejected outliers. The progression of images on
the right shows the robustness gained by increasing the cone angle:
from a single ray to the antipodal point (top right), up to sampling
of a 120◦ cone, which is used in practice (bottom right)

multiple rays, there are still positions on the mesh where
the measure can change after pose changes (Fig. 4). To
overcome this, we perform smoothing based on a small
number of bilateral filtering iterations of the SDF values
on small mesh neighborhoods around each vertex.
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where f i+1
v (x) is the SDF value of point x in iteration

i +1. It is calculated as the average sum of all y neighbors
of x, weighted using a geodesic distance-based Gaussian

Fig. 5. The effect of enlarging the cone angle and adding more rays on the consistency of the SDF over different poses

Fig. 4. In some cases, different poses of the object may imply dif-
ferent SDF values in the same position on the mesh. By using
robust statistics and smoothing, we can overcome this problem

function w, and clumped in the function domain by c
(c(x) = 0 for x > t).

As an example, using the five different poses of the same
human model of Fig. 2, we measure the SDF value at the
center of each face. We then calculate the mean of the SDF
value for each face over the five poses. Next, we measure
the difference between the SDF value of each face and its
mean in all five poses, and average it over all mesh faces.
Figure 5 shows a plot of this divergence and its standard de-
viation. The SDF values in this examples are normalized to
[0, 1] and so the differences are in the order of 0.1% while
the standard deviation are extremely low.

The basic operation in the SDF calculation is a ray-
mesh intersection, well known in ray-tracing. This oper-
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Table 1. Timing results for computing the shape diameter function
using 30 rays for each point. Testing done on Pentium 4 1.8 GHz
with 2 GB RAM and Nvidia Ge-Force FX-5600

Mesh Vertices Faces Time (sec.)

Low-res man 2500 4000 1.5
Dino-pet 3300 6500 1.7
Frog1 6700 13 000 4.68
Horse 20 000 40 000 18
Hi-res man 25 000 45 000 26.8
Feline 50 000 100 000 55
Armadilo 175 000 350 000 110

ation can be accelerated using a spatial search structure, in
our case an octree built around the mesh. In general, the
intersection calculations along with construction of the oc-
tree do not take more than a few seconds even on large
meshes. Consequently, computing the SDF even on large
meshes takes on the order of seconds (see Table 1). The
outliers removal method removes rays with no intersection
at all (infinite length rays), making the SDF calculation
robust to cracks and holes in non-watertight meshes.

4 Consistent partitioning

Many mesh partitioning algorithms use surface attributes
such as curvature and dihedral angles. Using such at-
tributes the results of partitioning may change if the pose
of the object changes, and may be disparate on rather
similar objects. One option to preserve consistency is to
transform the shape into a ‘canonical’ position (e.g., using
multi-dimensional scaling [6]) and then apply the parti-
tioning [12]. Nevertheless such transformation are often
unstable and may change drastically if the mesh changes
its connectivity or topology even slightly.

Our approach is to use a shape property that provides
consistency over pose changes – the SDF. The SDF also
distinguishes natural object parts. One can observe (Fig. 6)
that points belonging to a specific part of an object, e.g.,
the fingers, hands, legs, torso, and head in humans and ani-
mals, have similar SDF values which are characteristic of
the part itself. Lastly, the SDF is similar across similar ob-
jects providing consistency on matching parts of similar
shapes.

At a pre-processing stage, we calculate the SDF value
of the middle of each facet. To maintain compatibility over
different meshes, which may have different scales and
resolutions, we normalize and smooth the function. We
also perform the partitioning in log-space, enhancing the
importance of delicate parts (which tend to have low char-
acteristic SDF values). The normalized SDF value nsdf of
facet f is defined:

nsdf( f) = log
(

sdf( f)−min(sdf)

max(sdf)−min(sdf)
∗α+1

)

/ log(α+1),

Fig. 6. The shape diameter function highlights similar parts in simi-
lar 3D shapes, for instance in animals (top) or birds (bottom).
Colors indicate the value of the diameter function – from red
(small) to blue (large)

where sdf : F →R is the SDF value for each facet f .
α is a normalizing parameter, which is set to 4 in all our
examples.

If we view the surface of the mesh as the domain, then
the SDF is a scalar function over this domain. The iso-
values of the SDF create iso-contours on the mesh and
could be used to separate parts with distinctively different
SDF values. Choosing several such iso-values can create
a hierarchal partitioning of the object. For example, one
iso-value may separate the arms, legs and head of a human
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model from the body, while the second and third values
might separate the hands and the fingers. This means that
there is also a simple and intuitive mapping between the
number of separating SDF values and the partitioning
hierarchy – more values will create finer partitioning.

Our partitioning algorithm is composed of two steps.
The first uses soft-clustering of the mesh elements (faces) to
k clusters based on their SDF values, and the second finds
the actual partitioning using k-way graph-cut to include
local mesh geometric properties. Note that k, the number of
clusters chosen, is more naturally related to the number of
levels in the hierarchy and not to the number of parts.

In the first step we use a Gaussian mixture model
(GMM) fitting k Gaussians to the histogram of SDF
values of the faces. This is achieved using the expectation-
maximization (EM) algorithm, which takes very little time
since the histogram is only 1D. For further details regard-
ing GMM and EM, we refer the reader to [7, 33]. The
result of this clustering process for each face is a vector of
length k, signifying its probability to be assigned to one of
the SDF clusters. Note that each SDF cluster may contain
multiple mesh parts such as legs or fingers. Using different
values of k results in different hierarchies of parts (Fig. 7).

In the final hard partitioning of the object we would
like to smooth the boundaries between parts and adhere
to local mesh features such as concave areas or creases.
The second step of our partitioning algorithm employs
an alpha expansion graph-cut algorithm [35] to arrive at

Fig. 7. Fitting the histogram of the SDF with more Gaussians re-
sults in finer partitioning of the object to parts

the final partitioning. The k-way graph cut assigns a sin-
gle partition for each face, taking into account both the
probability vector from the EM step, and the quality of
the boundaries (smoothness and concave areas, where we
measure concavity as the positive dihedral angle between
two faces, normalized to [0, 1]). The graph cut optimiza-
tion minimizes the following energy functional, which is
built from e1 the data term, and e2, the smoothness term:

E(x) =
∑

f ∈F

e1( f, xf )+λ
∑

{ f,g}∈N

e2(x f , xg)

e1( f, xp) = − log(P( f |x f )+ε)

e2(x f , xg) =
{− log(θ( f, g)/π) x f �= xg

0 x f = xg,

Fig. 8a–d. The two step partitioning algorithm: a SDF values are
clustered to create soft partitioning of the mesh. b After the first
step we show the soft partitioning using simple thresholding. c The
partition is refined by the second step of k-way graph-cut algorithm
that creates smooth boundaries and adheres to local features such
as concave areas on the mesh. d The hierarchical partitioning is
robust, pose oblivious and fast
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Fig. 9a,b. Despite pose changes, partitioning based on the SDF
function remains consistent as can be seen on the horse model (a)
and human hand (b)

Fig. 10. Simple partitioning (one level only) on various animal
meshes reveals similar parts in all of them

where x f is the cluster assigned to face f . P( f |xp) rep-
resents the probability of assigning face f to cluster p.
These value are derived from the GMM fitted in the first
step of the algorithm. N is a set of adjacent face pairs in
the mesh, λ is a parameter defining the degree of smooth-
ness, and θ( f, g) is the dihedral angle between facets f
and g. The result of the graph cut algorithm is a smooth
partitioning of the mesh, clearly separating distinct parts.
In many cases, by sorting the means of the GMM model
from large to small, we can also define a hierarchical parti-
tioning of mesh elements. The first level of the partitioning
separates the largest value (and its associated faces) from
all other values. The second level adds a separation be-
tween the second largest value and all the other values, and
so on (Fig. 8).

Because it is based on the pose oblivious SDF, this
partitioning technique remains consistent through pose
differences of the same object (Fig. 9). To demonstrate

Fig. 11. Additional partitioning results

Table 2. Percent of triangles assigned to a different part between
all pairs of poses of the horse in Fig. 9. The average percent is
2.2013%

Pose 1 2 3 4 5 6

1 0 2.314 3.234 2.761 1.677 2.842
2 2.314 0 4.0789 3.605 2.521 3.719
3 3.234 4.078 0 0.909 2.875 2.842
4 2.761 3.605 0.909 0 2.456 2.129
5 1.677 2.521 2.875 2.456 0 1.655
6 2.842 3.719 2.842 2.129 1.655 0

Table 3. Timing results for the steps needed to perform consistent
partitioning. Timing results are for Pentium 4 1.8 GHz with 2 GB
RAM and Nvidia Ge-Force FX-5600

Model # Faces Build Soft K-way
GMM partitioning graph cut

Dino 5 k 20 ms 20 ms 30 ms
Triceratops 5 k 21 ms 20 ms 28 ms
Cheetah 15 k 22 ms 23 ms 31 ms
Parasour 15 k 23 ms 21 ms 31 ms
Horse 40 k 20 ms 25 ms 45 ms
Elephant 40 k 15 ms 30 ms 50 ms
Hi-Man 40 k 30 ms 25 ms 90 ms
Camel 75 k 25 ms 25 ms 100 ms
Armadilo 350 k 40 ms 35 ms 180 ms

consistency, we measured the percent of faces assigned
to different parts in different poses on all the pairs of
the horse poses and found it is around 2% (Table 2).
Moreover, the results of our technique can create consis-
tent parts in meshes of different objects as long as their
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Fig. 12. a Projected points inside the Dino-Pet hand. b The points after moving least squares (MLS) projections. c The ordered poly-
segments. d The final connected skeleton

shapes are similar (Fig. 10). Figure 11 shows some more
partitioning results and Table 3 gives indication for the
running time of the algorithm, which is on the order of
seconds.

5 SDF-guided skeleton extraction

The curve skeleton of a 3D object is a one-dimensional
graph structure consisting of nodes (joints) and edges
(bones) supporting the mesh object from within. In graph-
ics and animation it is important to link between the skele-
ton and the boundary of the object. Similar to the parti-
tioning consistency problem, most previous skeletonizing
algorithms may produce different skeletons for different
poses of the same object. Based on the SDF we propose
a fast and simple algorithm to create a skeleton structure
based on the SDF. The skeleton remains consistent over
pose changes of the object and produces analogue skele-
tons in analogue parts of different objects.

Our key idea is to exploit the fact that the SDF approx-
imates twice the distance to the medial axis in most points
on the mesh surface. We begin by selecting a set of N ran-
dom points on the surface (not more than 10 000 points are
used in the examples in this paper), and project them in an
inward normal direction to a distance which is half of their
SDF value. This creates a point cloud P inside the object
that lies near the medial axis. The points in P already ap-
proximate the general structure of the skeleton (Fig. 12a),
and retain a connection to their origin points on the sur-
face.

Next, we use the moving least squares (MLS) method
[17] to fit a single non-intersecting high-degree curve onto
the noisy point set P. This algorithm is similar to [15],
compensating for outliers and filtering out regions which
do not have a good candidate for a one-dimensional skele-
ton. However, in contrast to [15], we search for a tree-like
structure of line-segments connected at sharp points. Each
projected point p in the point cloud P retains its distance
to the surface as radius(p). This value approximates the
medial axis radius at this point. For each p ∈ P we com-
pute the principal component analysis (PCA) of the point’s

neighborhood within radius(p) and project p onto its re-
gression line. Next, we define a confidence measure using
all three principal components’ eigen-values e1, e2, e3 as
follows:

confidence(p) = max(e1, e2, e3)

e1 + e2 + e3
.

Intuitively, we are looking for points which would fit
well on a curve-skeleton; therefore, the confidence meas-
ure is based on the relative strength of the first principal
component to the other two. A low confidence indicates
that no definite skeleton can be extracted in this region.
These parts are usually where several skeleton segments
connect (e.g., the base of the hand where the fingers meet),
or parts which are not generally cylindrical. These parts
will be connected at the final stage of the algorithm. We
iterate the projection procedure several times until con-
vergence (usually only 2 to 4) and then use only points
with high confidence measure. The final output of this al-
gorithm is a cloud of points T which closely resembles
a one-dimensional skeleton (Fig. 12b). Following the iter-
ations enforces a minimal distance ε between the points
in T , removing points which are too close together.

In the next stage we cluster and order all points
in the thinned point cloud T to create skeleton seg-

Fig. 13. The SDF based skeleton (superimposed in blue) closely re-
sembles the medial axis (in red, calculated using a 2563 voxelized
grid)
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ments. We choose the point with highest confidence
maxconfidence{p ∈ T } and grow its skeleton segment by
clustering all points near its regression line. This process
continues recursively in both directions of the regression
line by growing poly-segments. Once we cannot extend
the poly-segment anymore, we choose the next best point
that is still not clustered and proceed to create more
poly-segments until all points have been processed. The
result of this stage is a small set S of disconnected poly-
segments (s1, . . . , sn), each representing one skeleton part
(Fig. 12c).

Table 4. Timing results for the steps needed to perform skeleton ex-
traction. Timing results are for Pentium 4 1.8 GHz with 2 GB RAM
and Nvidia Ge-Force FX-5600

Model # Faces Point MLS Segment
proj. thinning connection

Dino 5 k 20 ms 1.5 s 1.2 s
Triceratops 5 k 20 ms 1.8 s 1.5 s
Cheetah 15 k 21 ms 2 s 2.5 s
Parasour 15 k 25 ms 2.5 s 4 s
Horse 40 k 20 ms 2.6 s 1.8 s
Elephant 40 k 20 ms 2.4 s 4 s
Hi-Man 43 k 25 ms 5 s 3 s
Camel 75 k 25 ms 3.7 s 2.5 s
Armadilo 350 k 40 ms 5 s 2.2 s

Fig. 15. a Consistent SDF on six horses poses. b Consistent partitioning. c The projected points retain a strong connection to the surface.
Each projected point is colored in it’s matching face’s partitioning color. d The final consistent skeleton, strongly tied to the surface

Finally, we connect the poly-segments together to form
a single one-dimensional skeleton. Our goal is to min-
imize the number of joints between segments while still
retaining the shape of the skeleton. Hence, we construct
more poly-segments connecting the ones created in the
previous stage. We use a k-terminals shortest-paths al-
gorithm between any k disconnected poly-segments in

Fig. 14. Examples of curve-skeletons of different models
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Fig. 16a,b. The SDF value on non-articulated objects (a), and the
results of partitioning and skeletonisation on such objects (b)

a given neighborhood. We search for the shortest path
using the original points in P, since the points in P ap-
proximate the medial axis of the model being skeletonized
and are thus good candidates for connecting the poly-
segments.

We initialize a priority queue by finding the closest
points p ∈ P to each segment and store them with the
distance from the segment. While the priority queue still
holds points, we extract the closest point (minimal dis-
tance) and add its nearest neighbors to the queue. This
process grows poly segments in parallel extending several
segments while each new point extracted from the queue
is associated with one of the original segments. When two
grown poly segments meet, their two respective segments
are connected. We stop the growing process when all seg-
ments have been linked (Fig. 12d) together. This process
also maintains the link from the skeleton to the boundary
surface through the points in P. For generalized cylinders

the final results of the skeleton extraction algorithm lies
inside the model and approximates the medial axis well
(Fig. 13).

The whole process takes a few seconds even on large
meshes as can be seen in Table 4. In Fig. 14 we demon-
strate results of our skeleton extraction algorithm on a var-
iety of models. A key advantage of using SDF for skele-
tonization is that the skeletons of the same model in differ-
ent poses remain consistently connected to the model parts
(Fig. 15).

6 Conclusions

Dealing with families of objects instead of a single one
may impose further challenges on regular geometric algo-
rithms and mesh processing. In this paper we considered
the problems of partitioning and skeleton extraction of
a family of 3D meshes. The challenge is to retain con-
sistency within a given group of objects, such as differ-
ent poses of the same model or different objects hav-
ing similar shapes. By using the shape diameter function
as the main attribute in segmentation and skeletonisation
we manage to achieve such consistency. Using the SDF
may have its limitation on non-cylindrical parts of objects
(see e.g., Fig. 16b). Still, for most graphics and anima-
tion characters, this algorithm is successful, simple and
fast.

In the future we would like to extend the scope of the
consistent algorithms for partitioning and skeletonisation
to a larger type of shapes, such as mechanical designed ob-
jects and more. We would like to utilize the SDF and mesh
analogies to create more complex motion transfer. The
SDF is a powerful tool associating volumetric informa-
tion to the surface mesh. We believe the definition of the
shape diameter-function can assist many other geometry
processing and mesh related problems such as morphing
and editing, matching and partial matching.
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