
Do general-purpose programming
languages have a future?

Bjarne Stroustrup
Texas A&M University

(and AT&T Research)
http://www.research.att.com/~bs

Abstract
As the computing world matures, the roles of computer professionals are

becoming more specialized. In particular, a programmer can spend a
whole career doing work in embedded systems or data analysis without
a need to gain expertise in other fields. Would such programmers be
best served by completely different special-purpose languages? What
are the fundamental and commercial factors that drive language
evolution? What are the roles of program development environments,
libraries, and tools? I think that general-purpose languages will have a
key role in the programming world, but that the role will evolve and
differ from what most people think of today. To make the discussion a
bit concrete, I'll base some of my observations on examples from
current C++ and its possible future developments.

Intellectual tradition

• My background (think Cambridge and Bell labs)

– Pragmatic/empirical
• Build the system the best you can, try it out, measure it,

analyze it, fix it, then write about it
• Primarily considers systems to be used by others

– Idealistic
• The best system should win

– Even if it isn’t mine
• There are usually many different criteria for “best”

– Individual needs, taste, and opinions matter
• There are unacceptable ways of winning

– Lies (incl. gross exaggeration), money, many forms of marketing

My perspective
• Researcher

– (Ideas and systems can be fascinating by all by themselves)
• Research manager

– (yes, I can budget; I count costs and estimate economic benefits)
• Consultant

– (usually unpaid – so I don’t have to tell people what they want to hear)
• Teacher

– (mostly to professional programmers and managers)
• Academic

– (that’s a recent development)

• My bias:
– Applications with a high systems programming component
– Industrial applications
– Software is a very serious business

• lives depend on software
• key aspects of our civilization runs on software

Caveat
• My world view is heavily influenced by C++

– And C++ reflects my world view in many ways
• I don’t consider C++ an ideal language

– It’s a most useful language (http://www.research.att.com/~bs.applications)
– I suspect I know its weaknesses as better than most people

• E.g. irregular syntax and imperfect type system
– No language is perfect

• I like programming languages
– I don’t think there could be or should be just one language
– or just one kind of language

• What we want/need is good software
– A language is (just) a tool
– There is no perfect language, and there never will be

Overview

• What is a general-purpose language?
– And why would anyone care?

• What are the advantages of
– Special-purpose languages?
– General-purpose languages?

• Key examples
– Object model
– Container models

• Ideals for a general-purpose language
• How might this apply to C++?

Do general-purpose programming
languages have a future?”

• For me, this is not just an academic question
– Should I continue to work on C++?
– Should I aim for generality?
– Should I try to guide C++ into a (safe) niche?

(yes, yes, no)

• In general our answer has implications on
– how we structure systems
– what we teach
– where we spend resources

• Research
• Tools

Programming languages
• For every one problem/purpose, the ideal language is

a special-purpose one.
– Examples:

• Modeling mechanical systems (e.g. car engine, transmission)
• Stereoscopic display of molecules
• Engineering math (e.g. symbolic, numeric, visualization)
• Video game engine (e.g. DOOM)
• Graphical (e.g. GC)
• Text manipulation (e.g. layout, analysis, transformation)
• 2D and 3D Layout (e.g., architectural, chip design, graphics)
• Graph computation (e.g. routing)
• Expert systems (e.g. training simulators)

• We can’t always afford our ideals
– So how can we best approximate them?

What can a language do for a programmer?

• No single language feature is essential
– Lots of good programs have been written in languages deemed bad

• C, Cobol, Fortran, …
– Lots of projects have failed in languages proclaimed great

• Most failing projects use a fashionable/popular language

• A language cannot
– Prevent ill-conceived design strategies
– Prevent ill-conceived implementation strategies

• A language can help a programmer to
– express concepts directly
– express independent concepts separately
– in general
– affordably

Why do we specialize languages?

• To radically simplify expression of ideas
• To provide stronger guarantees
• To make programming easier for

– People who are not professional programmers
• But understand an application domain far better than programmers and

computer scientists
– Novices (students)

• This can be dangerous
– The less smart and less highly educated

• to be able to use more and cheaper programmers (this also can be dangerous)

• When done well, this necessarily limits the area of application

Problems with special-purpose languages

• By definition, an S-P language has an “edge” beyond
which a problem cannot be expressed
– So how do we reason about problems beyond the edge

• You can’t reason without concepts, without a language
– How do we extend the S-P language?

• Modify compiler
• Add new primitive
• Link to program fragment written in another language

– Another S-P language?
– A low-level language (e.g. C or assembler)
– A general-purpose language with a suitable library

• Some problems are messy
– We don’t (yet) have a formal model that could be supported by a

special-purpose (domain specific) language

What is a “general-purpose
programming language”?

• Originally
– Without specific restrictions of expressiveness or performance

• “At least as expressive as Algol 60”
– Without special facilities and restrictions for commercial or

scientific programming
• Not (just) COBOL
• Not (just) Fortran

– PL\1 was the original attempt to unify the programming world
• Of course it simply added one more faction

– Once in significant use, a language doesn’t die
• And it wasn’t better than Fortran and COBOL in their core areas

– So the special-purpose languages won round #1

Consider application areas
(We’re come a long way since the days of Algol 60)

• Compilers
• Natural language analyzer
• Image processing
• Image analysis
• Medical instrument control
• Payroll systems
• Billing systems
• Airline reservation systems
• Email systems
• Web browsers
• VLSI layout
• Chemical engineering process control
• Device drivers
• Electronic trading
• Engine control
• Graphics
• Geometric modeling,
• Operating systems

• Fuel injectors
• Cell phones & systems
• PDAs
• Switching systems
• Games
• Individual business applications
• Database-based transaction systems
• Airspace control systems
• Expert systems
• Symbol manipulation
• Enterprise systems
• Data mining
• Scientific/numeric applications
• Parallel computing
• Missile guidance
• Robotics,
• Telemetry
• Speech recognition/analysis

What is a “general-purpose
programming language”?

• Do we have a general-purpose language?
– Can a language be consider general-purpose if we can’t use it to write

• a device driver?
• an operating system?
• a text analysis application?
• a record processing database-intensive application?
• an expert-system
• symbolic manipulation application?
• a web commerce application?
• an engineering/numeric application?

• We have G-P languages
– in the sense that we can use them for all such purposes

• We don’t have a G-P language
– in the sense that a language is a close-to ideal for all such purposes
– A G-P language is at best the second choice for any one application

What’s right about a G-P language?

• You can do everything in it
– You can do any two tasks in it

• And that’s by definition rarely the case for a special-purpose language
– You can with a high probability collaborate with someone in a

different field
• Share source or link

• But
– Doing anything without proper libraries is painful

• Getting libraries from different producers to work together in non-trivial

• A general-purpose language rely on abstraction where special-
purpose languages rely on built-in specialized features
– To improve a general-purpose language, we must strengthen its

abstraction mechanisms

There will always be many languages

• Significant systems rely on code written in many languages
• Not just legacy code

– There are hundreds of millions of lines of code “out there”
– “legacy code” approximately means “code that’s being used”

• Programmers are often more important than code
– And programmers differ in their preferences of languages, tools, and

programming styles

• A general-purpose language must enable (and preferably
encourage and ease) interoperability

Which G-P languages do we currently have?

• Candidates
– Ada, C, C++, C# (?), Java (?), ML (?), Pascal(?)
– …

• Not candidates
– PERL, Visual Basic, Python
– COBOL, Fortran
– …

• There are N*1000 languages
– Domain specific
– Dead
– Unsupported
– Academic
– Platform specific
– Proprietary
– …

Do G-P programming languages have a future?
• Of course, but should they have?

– yes
• Just for “legacy code”?

– no
• Would the world be better without them?

– No, we can’t manage with just special-purpose languages
• Explorations of new/immature fields
• Implementation of special-purpose languages
• As “glue” for special-purpose languages

• Should we try to improve them?
– Yes, none is anywhere perfect

• What is it about G-P languages that we might improve?
– Abstraction facilities
– Interoperability
– Performance

Can you restrict programming style?
• Type safety is good

– Not a restriction except when dealing with hardware
– Complete type safety implies garbage collection

• for some degree of generality
• Forcing “object orientation” has been a failure

– “methods” that can’t be overridden
– “methods” that doesn’t operator on an object
– Classes have been successful as modules, though

• Strongly condemned features are making a comeback
– Overloading
– Generic programming
– Nested classes / events
– Multiple inheritance
– Static type checking
– Value types

Programming Styles (paradigms)
• A G-P language will be used for different paradigms

– “C style” (“Pascal style”)
• Procedures, structures, pointers

– Data abstraction
– Object-Oriented Programming
– Generic Programming

– Constraints
– Logical
– Rule-based
– Aspect-oriented
– …

• A general-purpose language needs broad support for paradigms
– Multi-paradigm programming

Languages “stretch”
• “C++ is a stretch language”

• - Peter Deutch (it was not meant to be a compliment)

• All languages “stretch” to serve a larger user community
– By serving A and B you server both A and B better than just

serving A or B
– Need to serve related uses
– Need to help users meet new challenges
– Applying lessons of experience
– Pressure from other languages

• Languages never shrink
– Older language have many features

• Some mainly for historical reasons (compatibility)
– warts

• Typically offer several ways of doing something
– All languages are older when they become mainstream

Languages “stretch”

• Classes, inheritance, exceptions, generics, abstract classes, overloading, value
types, properties, reflection, type safety, garbage collection, modules, etc.

• Simplified chart: C, C++, and Java have evolved significantly
• Critical design points:

– how to handle hardware
– How to handle performance needs

C

Simula

ML
C++

Java

C#

Modula-3

Pascal Borland Pascal

???

Smalltalk

Is C a G-P Language?
• No

– It’s a low-level language
– It offers hardly any type safety
– It offers no advanced features
– It offers no specific abstraction mechanisms

• Yes
– It is used for a wider range of applications than any other language

• Except C++
– It offers practical portability
– It runs on essentially every platform
– It offers performance that allows programmers to compensate for

lack of advanced features
– It interoperates with essentially all languages

Is Java a G-P language?
• No

– It’s an Object-oriented language ☺
– It can’t handle low-level systems programming
– It can’t handle high-performance computing
– It’s strengths comes partly from restriction
– It’s a platform

• Give up portability and you can handle a wider range of applications
• Yes

– It can do more than Algol60 ☺
– It can handle an huge range of applications “well enough”

• It is becoming a stretch language
– Several “editions” to increase its range of underlying systems

• At the cost of portability
– Many new language features over the years

Is it fair to consider performance?
• Yes, performance often matters

– Commerce: amazon, google, Amadeus, …
– Images: medical, movies, games, …
– Gadgets: cell phones, fuel injectors, …
– Scientific computation: protein folding, heat transfer, weather

forecasting, …
– Data management: mining, data capture, real time analysis (e.g.

fraud detection, monitoring), DBMS, …
• Naturally, performance isn’t always important

– Often, it is not
– But I can see echo delays in some modern single-user text

processing systems running on a GHz machine
• (I consider that a disgrace)

A general-purpose language must efficient

• In time
• In space
• Where needed
• Predictably
• Portably

(this is a very tough challenge)

Object models
Primitive object 1

Composite object 1 2

• Consider
– Fortran, C, C++, Java, C#
– Interoperability
– Hardware access

Object on heap 1 2

Polymorphic object info 1 2

Type info

Object model – C “container”
struct Cmplx { double re, im; };
struct Cmplx a[MAX] ;
struct Cmplx *p = a;
Struct Cmplx *q = malloc(sizeof(struct Cmplx)*MAX);

1 2 3 4

1 2 3 4

• Can address specific hardware locations directly
– bytes, half-words, words, double words, etc.

• Can match externally imposed layout exactly (bit fields)
• Explicit management of heap (2 words per array overhead)

Object model – C++ container
class complex { double re, im; public: /* operations and operators */ };
vector<complex> v;

size alloc

1 2 3 4 Space for growth

• Like C plus abstraction
– Enables, but doesn’t require run-time range checking

• User-defined types are fundamentally similar to built-in types
• 4 words per vector overhead

Object model – Java/C# container
class Complex { double re, im; /* operations and operators */ };
Complex[] v = new Complex[2];
v[0] = new Complex(1,2);

3 41 2

• References plus data on (garbage collected) heap
• Built-in types differ from user-defined types
• 2 words per vector plus 2 words per element overhead

Key example: Container access

• Most basic: C array
– (support for contiguous sequence of element of built-in types;

that’s what traditional hardware supports)

int a[4]; // holds objects directly
a[2] = 7;
int x = a[2];

struct My_type p = 0;
void* aa[4]; // indirection needed for polymorphism
aa[2] = p;
p = (struct My_type*) aa[2]; // explicit, efficient, and

// unchecked conversion (unsafe)

Key example: Container access

• Container of general (“universal”) object
– Java, C#, (and C++ if you really want to)

int[] a = new int[10]; // special case for Array and small built-in types
a[5] = 5;
int x = a[5];

ArrayList aa = new ArrayList(10); // container of references to objects
aa[5] = new My_class(3);
My_class v = (My_class)aa[5]; // explicit run-time check

– That cast is ugly, expensive, and often logically unnecessary

Key example: Container access
• Typed container

– C++ (and soon Java and C#)
// no special case for small built-in types (in C++ at least)
Vector<My_class> vmc[10]; // state the element type explicitly
vmc[5] = My_class(3);
My_class v = vmc[5];

– C++
• no run-time test
• elements are access directly (store pointer if you want indirection)

– C#, Java:
• implicit (expensive) run-time test
• elements are still stored indirectly

Roles for a general-purpose language

• Language for writing libraries
• Language for writing messy application parts
• Language for writing performance critical application parts
• Target for code generation
• Low-level glue language (e.g. C, unsafe, fast)

– As opposed to scripting languages
• Higher-level glue language (e.g. Java, safe, slow)
• Language for writing complete applications (?)

– Only through libraries, increasingly through libraries
• Teaching language (?)

– It is much easier to teach a simplified language
– Where, when, and how do you learn about real-world problems and

constraints?

Can a general-purpose language be
completely type safe?

• Depends on your definition
– Strictly-speaking: No
– But complete type safety is an advantage for a huge range of uses
– Probably unfair to deem a language that has a large stretch “not

general-purpose”
• We need to improve interoperability between type safe and

(typically unsafe) low-level languages
– Verification/proof techniques
– Clear (and non-proprietary) interfaces
– Clearly declared unsafe program areas (like Modula-3)
– …

Ideals for a G-P language
• Simplicity

– Incl. teachability
• Precise specification
• Easy to analyze
• Run-time performance

– uncompromising
• Ability to run everywhere

– And take advantage of local facilities
• Type safety

– And a facility to do type-unsafe operations
• Extensibility

– Good abstraction facilities
• Ability to interoperate

– With code from different implementations
– With code from different languages

Can any of this be used to improve C++?

• C++0x is being prepared by the ISO C++ committee
– Plus national representatives, of course
– Design by committee is a horror

• Committees don’t have an overall aim/”vision”
• (some) Individuals do (and they don’t agree)
• Compromises are needed

– “a language good enough for everyone and ideal for none”

– Only a committee can deal with an established
mainstream language

• “the ISO committee process is the worst, except for all the
alternatives” (with apologies to W. Churchill)

Overall Goals

• Make C++ a better language for systems programming
and library building

– Rather than providing specialized facilities for a particular sub-community (e.g.
numeric computation or Windows application development)

– Maintain the zero-overhead principle

• Make C++ easier to teach and learn
– Through increased uniformity, stronger guarantees, and facilities supportive of

novices (there will always be more novices than experts)
– Through better libraries

So,
do general-purpose programming

languages have a future?
• Yes

– And we still have a long way to go to meet obvious ideals
• Type safety
• Elegant and general abstraction
• Performance
• Interoperability
• Teachability
• Regular syntax and semantics

– Look to C, C++, C#, Java
• That’s where the major use that shapes demands will be
• Ideas can come from experimental languages

	Do general-purpose programming languages have a future?
	Abstract
	Intellectual tradition
	My perspective
	Caveat
	Overview
	Do general-purpose programming languages have a future?”
	Programming languages
	What can a language do for a programmer?
	Why do we specialize languages?
	Problems with special-purpose languages
	What is a “general-purpose programming language”?
	Consider application areas(We’re come a long way since the days of Algol 60)
	What is a “general-purpose programming language”?
	What’s right about a G-P language?
	There will always be many languages
	Which G-P languages do we currently have?
	Do G-P programming languages have a future?
	Can you restrict programming style?
	Programming Styles (paradigms)
	Languages “stretch”
	Languages “stretch”
	Is C a G-P Language?
	Is Java a G-P language?
	Is it fair to consider performance?
	A general-purpose language must efficient
	Object models
	Object model – C “container”
	Object model – C++ container
	Object model – Java/C# container
	Key example: Container access
	Key example: Container access
	Key example: Container access
	Roles for a general-purpose language
	Can a general-purpose language be completely type safe?
	Ideals for a G-P language
	Can any of this be used to improve C++?
	Overall Goals
	So,do general-purpose programming languages have a future?

