Sedimentary basin modeling Petroleum system modeling

I.Faille and IFPEN "Basin Modeling Team" IFPEN

X. Tunc Phd/ T. Gallouët (Univ. Marseille)

A. Fumagalli* Postdoc / J. Roberts J. Jaffré (Inria)

Energies nouvelles

^{*} Now at Politecnico di Milano

Sedimentary basin modeling

- Model the basin formation (sediments and fluids that fill in) to help answer the following questions :
 - Does a prospective structure contains hydrocarbons ?
 - If yes, what is the volume and the quality of the trapped hydrocarbons?

Is there a risk of encountering abnormal pressures ?

© 2012 - IFP Energies nouvelles

organic matter

Temperature increase

generation and expulsion - migration accumulation in reservoirs

- Geological time scale (10 to 400 Ma)
- Space scale : 100 km extension, 10km depth
- **Sedimentary layers**

Sedimentary basin history

- Fluid transfer
 - Highly heterogeneous porous media
 - Permeability : Up to six orders of magnitude
 - Overpressure:
 - Ability for the fluids to flow / ability for the rock to compact
 - Transient state
 - Oil trapping
 - Multi-phase flow
 - Discontinuous entry capillary pressure : oil accumulates under capillary barriers
- Heat transfer
 - Slightly heterogeneous
 - Conduction dominant

Sand, a few mm

Shale, a few 1/10mm

Pile of sedimentary layers

- Pile of layers
 - Vertical deformation
- Conformal structured mesh
 - Degeneracies
 - LGR

- Basin cut by faults
- Any kind of deformations
 - Extension and/or compression
 - Sliding along fault surfaces
- Past Geometries given by the restoration process
- Heat and fluid transfer

3D basin simulation : from simple to complex context

- ArcTem Simulator
- Main characteristics and potential improvements
 - Mesh
 - Heat transfer and fluid flow
 - "standard" model and FV discretization
 - Faults
 - Interface fault model
 - Different discretization

4D Mesh (space, time)

- At a given time
 - Mesh that conforms to the stratigraphic layers
 - Non structured

- Non matching
 - A fault is represented as two sliding surfaces : two sets of faces, that are eventually in contact

4D Mesh (space, time)

- Mesh that follows rock deformation
 - Able to follow :
 - Sedimentation, erosion, deformation, sliding along fault surfaces
 - Geological phenomena correspond to incremental modifications of the grid
 - A toy example (not geological ...)

Two phase fluid flow / Heat transfer

- Single-phase flow : simple rock compaction / Fluid flow
 - Compaction is the main driving phenomenon for fluid flow
 - Mass conservation
 - Darcy's law
 - Vertical mechanical equilibrium
 - Elastoplastic rheology

$$\begin{aligned} \frac{\partial}{\partial t}(\phi\rho_w) + div(\rho_w \mathbf{v}_w) &= q_w \\ \phi(\mathbf{v}_w - \mathbf{v}_s) &= -m_w \mathbf{K}(\nabla P_w - \rho_w \mathbf{g}) \\ \frac{\partial}{\partial z}\sigma_v &= (\rho_w \phi + \rho_s (1 - \phi))g \\ \phi &= \mathcal{F}_{\phi}(\sigma_v - P) \end{aligned}$$

Heat transfer

Accumulation, conduction, convection

$$\frac{\partial}{\partial t}(\rho_s c_s(1-\phi) + c_w \rho_w \phi)T + div(\rho_s c_s(1-\phi)T\mathbf{v}_s + \rho_w c_w T\mathbf{v}_w)$$

$$+ div(-\lambda_b \nabla T) = q_T$$

 $\frac{\partial}{\partial t}(\phi \rho_{\alpha} S_{\alpha}) + div(\rho_{\alpha} \mathbf{v}_{\alpha}) = q_{\alpha}$ $\phi S_{\alpha}(\mathbf{v}_{\alpha} - \mathbf{v}_{s}) = -m_{\alpha}(S_{\alpha})\mathbf{K}(\nabla P_{\alpha} - \rho_{\alpha}\mathbf{g})$

- Hydrocarbon generation
- Oil migration and trapping under cap-rocks

Cell centered Finite Volume discretization

- Discrete unknowns
 - Pressure, porosity, temperature, saturation in each cell
 - Overburden at each node
- Cell centered FV scheme for diffusive terms
- Upstream weighting for the saturation
- Main issue
 - "DivKgrad" scheme for very distorted grids
 - Flow $div(-\lambda \nabla T)$
 - Heat transfer $div(-\mathbf{K}\nabla P)$
 - O-scheme / TPFA [Aavatsmark et al]

$$F_{\delta} = \sum_{\mathcal{L} \in \mathcal{S}_{\delta}} T_{\delta, \mathcal{L}} u_{\mathcal{L}}$$

- Implicit time discretization
 - Fully or sequential implicit for the pressure/saturation

П

- Structure
 - A fault is a fracture that becomes a slip surface across which there is significant relative displacement at basin scale
 - A volumetric zone of complex architecture
 - Core zone (highly deformed) that can be filled with shale
 - Damage zone (fractured rock)
 - Thickness (10m) << basin scales (10 to 100 km)
 - Large vertical extension (kms)
- Impact on fluid flow
 - Juxtaposition of distinct stratigraphic layers
 - Properties
 - Conduit to fluid flow
 - Barrier to fluid flow
 - Damage zone as a conduit and core zone as a barrier
 - Pressure prediction and hc migration

Conceptual fault model [Fredman et al, 2007]

- Strong similarities with flow through fractured porous media
 - Fracture domain which is very thin with respect to the domain extension, but has potentially a major influence
 - Thickness that varies over space and time
 - Flow governed by Darcy's law
- But some differences
 - At geological time scales : slip along the fault surface
 - Large displacement
 - Very heterogeneous fault zone
 - Less dense network

© 2012 - IFP Energies nouvelles

Interface fault model

- Discrete fracture models
 - Geometrically, fracture thickness is not represented in the domain
 - A fracture is only represented as an interface
 - "Discrete" approach
 - Discrete and a second s
 - "Virtual" volumetric mesh : extrusion in the normal direction
 - "Continuous" approach
 - [Alboin et al, 1999], [Martin et al, 2005], [Flauraud et al, 2003], [Angot et al, 2005]...
 - Continuous Interface model derived assuming that d<<L
 - Fracture width becomes a parameter of the model
- Two-interface fault model
 - Continuous approach
 - Model and TPFA/ MPFA Finite Volume discretization
 - Discrete approach
 - Hybrid Finite Volume discretization
- Basin simulation
 - Some results for single-phase flow and Hc migration

Interface fault model

- A double interface fault model
 - Extension of the reduced fracture model
 - Single phase Darcy flow (viscosity = 1)
 - Additional unknowns $P_{f,I}, P_{f,II}$
 - Normal and tangential permeability in the fault

Two-interface fault model : continuous approach

- TPFA/O-scheme discretization (X.Tunc Phd/ T.Gallouët)
 - "Natural" grids for the interfaces
 - Compatible with the geometrical definition of the fault

- Cell centered scheme
 - One unknown in each cell and in each fault edge
 - Adaptation of TPFA, O-Scheme (or other MPFA...)
- Mass balance in each cell and in each fault edge
- Flux approximations
 - Along fault flux
 - 2D VF approximation
 - If non planar fault surface, one normal per edge

 D^{f}

TPFA/O-scheme discretization

- Fault-matrix flux
 - Given by the fault model
 - Combined with a standard approximation on the matrix side : Two-points, O-scheme, ..., to eliminate P_{σ}
- Fault-fault flux
 - Computed on sub-faces
 - Given by the fault model

$$F_{\sigma}^{f,f} = |\sigma|_{\gamma} |\tilde{K}_{f,n,\sigma}(P_{\sigma|\gamma}^f - P_{\gamma|\sigma}^f)|$$

• $P^f_{\sigma|\gamma}$ obtained by piece-wise constant or piece-wise linear approximation compatible with flux along the fault approximation

- more permeable (*100)
- small width (5m / 6km)

Slightly compressible single-phase flow

© 2012 - IFP Energies nouvelles

Some results on a static geometry

OverPressure field at first time step

The model captures the connectivity induced by the fault zone

TPFA versus O scheme

- TPFA for fault-fault fluxes tends to smooth the pressure profile along the fault
- If too high fault permeability, lack of stability for the O scheme

Hybrid Finite Volume scheme

- Introduced to overcome the lack of stability of MPFA [Eymard et al,2007]
 - Cell and Face unknowns
 - Discrete equations
 - Flux per cell and face
 - Balance over each cell
 - Flux continuity on each face $F_{\mathcal{K}(\delta),\delta} + F_{\mathcal{L}(\delta),\delta} = 0$

$$F_{\mathcal{K},\delta} = \sum_{\delta' \in \mathcal{E}_{\mathcal{K}}} T_{\delta,\delta'} (P_{\mathcal{K}} - P_{\delta'})$$
$$\sum_{\delta \in \mathcal{E}_{\mathcal{K}}} F_{\mathcal{K},\delta} = |\mathcal{K}| q_{\mathcal{K}} = f_{\mathcal{K}}$$

$$P_{\mathcal{K}}$$

- Flux expression : built to ensure coercivity
 - Discrete gradient in each cone

 $\nabla_{\mathcal{K},\delta} u = \nabla_{\mathcal{K}} u + \alpha_{\mathcal{K}} R_{\mathcal{K},\delta}(u) \vec{n}_{\mathcal{K},\delta}$

- Handles non-matching grids : sub-faces unknowns
- Generalized Hybrid scheme [Droniou et al, 2010]
 - Equivalent to Mimetic Finite Difference

Double Interface Model : virtual fault mesh

- Virtual volumetric mesh of the fault zone (A. Fumagalli Postdoc/ J. Jaffré/ J. Roberts)
 - Extrusion of each (n-1)D fault surface in the normal direction
 - Two layer mesh

- Discretization with HFV
- Non matching grids : additional discrete unknowns on the fault/fault interface

- Fault-fault flux defined on sub-faces
- For any face or sub-face of the virtual cell

$$F_{\sigma,\delta} = \sum_{\delta' \in \mathcal{E}_{\sigma}} T_{\delta,\delta'} (P^f_{\sigma} - P^f_{\delta'})$$

Some results on a toy problem

- Vertical fault, sliding blocks
- Alternatively shale and sand layers

Initial geometry

- Slightly compressible fluid
 - Shale K=1.e-4 mD
 - Sand K=1mD
- Initial pressure field

Influence of fault zone properties

Final geometry

Juxtaposition fault

Fault face permeability is identical to that of its neighboring matrix cell

Fault as a chanel

Fault face permeability is 100mD

Velocity field Arrow size is reduced by a factor 5

Pressure field

Fault as a moderate barrier

Fault face permeability is 0.01 mD

Some results for a realistic test case

3D domain, 2 intersecting faults

Homogenous domain K=0.01mD

Initial condition

Fault as a chanel K=1mD

Fault as a barrier K=1.e-4mD

Heterogeneous domain 1mD/ 0.01mD

Velocity field

Juxtaposion fault

Fault as a chanel 100mD

Fault as a barrier 1.e-4mD

© 2012 - IFP Er

Basin simulation

- Single phase fluid flow coupled with compaction
 - Two-points or O-scheme in the matrix
 - Two-points for the fault model
- Sliding surfaces
 - Common-refinement of the two fault surfaces
 - Computed at each time step
 - After projection on an average surface (gap/overlap)
- Fault representation
 - Damage and core zone
 - Core zone can act as a barrier
 - Fault-fault fluxes
 - Fault properties can change over time
- Extension to two-phase flow
 - Simpler model for capillary pressure

Two-phase flow

Fault faces properties are the same as the neighboring cells

Conclusions - Perspectives

- Basin modeling in complex geological context
- 3D moving mesh
 - Fully unstructured, poor quality
 - Non-matching and sliding across faults
 - Mesh generation remains an issue for complex real basins
- Fault zones
 - A two-interface fault model
 - Single-phase flow
 - Continuous approach : MPFA/TPFA FV
 - Virtual mesh approach : HFV
 - Two-phase flow
 - O-scheme/TPFA + upstream weighting
 - More robust MPFA scheme
 - HFV
- 3D compaction
 - a more mechanics-based approach

