

Centre for Health Engineering Centre Ingénierie et Santé LCG CNRS UMR 5146

Pierre Badel + colleagues

www.emse.fr

Identification of vascular soft tissue mechanical properties

Center for Biomedical and Healthcare Engineering

SAINT-ETIENNE

Application to ATAA

Soft Tissue Biomechanics group

Understanding the mechanical behavior of these tissues

Study of the mechanical action of medical devices

A few words on inverse identification methods applied to soft tissue biomechanics

Ascending thoracic aortic aneurysm

- Hyper-elastic model identification
- Rupture characterization

Perspectives

Conclusion/perspectives

Inverse identification

Introduction

A few words on inverse identification methods applied to soft tissue biomechanics

Ascending thoracic aortic aneurysm

- Hyper-elastic model identification
- Rupture characterization

Perspectives

01/04/2014

Ecole Nationale Inverse identification

Supérieure des Mines

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

[Sacks, 2000]

Ecole Nationale Inverse identification

Supérieure des Mines

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

Why inverse identification in soft tissue biomechanics?

Relevant experimental data is complex (geometry, boundary conditions...)

Complex tissues (non-linearity, heterogeneity...)

Models are often complex

In vitro ex.: Inflation/extension, mouse carotid artery

(coll. M. Sutton, U South Carolina, USA)

In vitro ex.: Inflation/extension, mouse carotid artery

(coll. M. Sutton, U South Carolina, USA)

Finite Element Updating

In vitro ex.: Inflation/extension, mouse carotid artery

(coll. M. Sutton, U South Carolina, USA)

Finite Element Updating

In vitro ex.: Inflation of a pig aorta

(coll. K. Genovese, U della Basilicata, Italy)

Ecole Nationale Inverse identification Supérieure des Mines

SAINT-ETIENNE

[Genovese, 2009]

initial length	$L_0 \approx 35 \text{ mm}$
initial outer radius	$r_0 \approx 10 \text{ mm}$
initial thickness	e ₀ ≈ 1.3 mm

In vitro ex.: Inflation of a pig aorta

(coll. K. Genovese, U della Basilicata, Italy)

Ecole Nationale Inverse identification Supérieure des Mines

SAINT-ETIENNE

Conclusion/perspectives

In vitro ex.: Inflation of a pig aorta

Principle of virtual work with given test functions

Ecole Nationale Inverse identification

Supérieure des Mines

$$-\int_{V} \sigma_{ij} : \epsilon_{ij}^{*} dV + \int_{\partial V} T_{i} u_{i}^{*} dS = 0$$

Constitutive model (unknown parameters)

$$-\int_{V} \sigma_{ij} \left(\mathbf{\underline{E}}, \mathbf{A} \right) : \boldsymbol{\varepsilon}_{ij}^{*} \, dV + \int_{\partial V} \mathbf{T}_{i} \mathbf{u}_{i}^{*} \, dS \quad \textcircled{2} \quad 0$$

Equilibrium ⇔ Actual properties

Virtual Fields Method

01/04/2014

In vitro ex.: Inflation of a pig aorta

(coll. K. Genovese, U della Basilicata, Italy)

Virtual Fields Method

01/04/2014

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

In vivo ex.: Soft tissues of the leg

Pressure transmission mechanisms?? ... FE modeling of the action of compression socks

http://www.Sigvaris.fr

Properties of the leg's soft tissues?

Conclusion/perspectives

In vivo ex.: Soft tissues of the leg

Ecole Nationale Inverse identification

Supérieure des Mines

Application to ATAA

FE Updating + specific cost function

In vivo ex.: elastic properties of human carotid arteries

In vivo ex.: elastic properties of human carotid arteries

FE Updating + specific cost function

Inverse identification

Application to ATAA

Conclusion/perspectives

Application to ATAA

Introduction

- A few words on identification methods applied to soft tissue biomechanics
- Ascending thoracic aortic aneurysm (PhD A. Romo)
 - Hyper-elastic model identification
 - Rupture characterization

Perspectives

Application to ATAA **Motivation** Conclusion/perspectives

... examples of diseases...

[Chavanon, 2006]

Ascending aorta

01/04/2014

Structure

Conclusion/perspectives

[Rezakhaniha et. al., 2011]

[Sommer et. al. 08]

[Rhodin, 1979]

Ecole Nationale Inverse identification

Supérieure des Mines

SAINT-ETIENNE

Application to ATAA Motivation Conclusion/perspectives

Mechanical behavior well known, qualitatively

Patient-specific properties? Aneurysm rupture strength/characterization? Damage/rupture mechanisms?

01/04/2014

Pierre BADEL - Séminaire Modélisation et Calcul Scientifique - INRIA

Application to ATAA Methodology Conclusion/perspectives

Our methodology

[Romo A, Badel P, Duprey A, Favre J-P, Avril S. In vitro Analysis of Localized Aneurysm Rupture. J Biomech. 2014]

Application to ATAA Methodology Conclusion/perspectives

Our methodology

[Romo A, Badel P, Duprey A, Favre J-P, Avril S. In vitro Analysis of Localized Aneurysm Rupture. J Biomech. 2014]

Ascending Thoracic Aortic Aneurysm: Surgery

Application to ATAA Experiment Conclusion/perspectives

Exp: bulging test + full-field measurements

Reconstruction of a **3D surface**

+

Rupture stress calculation

01/04/2014

SAINT-ETIENNE

Application to ATAA

Experiment

Conclusion/perspectives

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

Application to ATAA Methodology Conclusion/perspectives

Our methodology

[Romo A, Badel P, Duprey A, Favre J-P, Avril S. In vitro Analysis of Localized Aneurysm Rupture. J Biomech. 2014]

Ecole Nationale Inverse identification Supérieure des Mines

SAINT-ETIENNE

Local strain field

Application to ATAA

Green-Lagrange strain tensor

$$E = \frac{1}{2} (F^T F - I) = \begin{bmatrix} E_{11} & E_{12} \\ E_{21} & E_{22} \end{bmatrix}$$

Thickness evolution

Ecole Nationale Inverse identification Supérieure des Mines

SAINT-ETIENNE

*h*₀ is the **homogeneous initial thickness**+ assumption: **incompressibility**

Application to ATAA

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

Application to ATAA Methodology Conclusion/perspectives

Our methodology

[Romo A, Badel P, Duprey A, Favre J-P, Avril S. In vitro Analysis of Localized Aneurysm Rupture. J Biomech. 2014]

$$div(\boldsymbol{\sigma}) + f = 0$$

Ecole Nationale Inverse identification Supérieure des Mines

Application to ATAA

Membrane elastostatics

SAINT-ETIENNE

n₃

n₂

h

Ecole Nationale Supérieure des Mines

Membrane elastostatics

Application to ATAA

Membrane elastostatics

Compute facet forces

$$\vec{F_b} = \frac{\sigma_{n_2} + \sigma_{n_3}}{2} \cdot \vec{f_b} \cdot l_b \cdot h$$
$$\boldsymbol{\sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{bmatrix}$$

LOCAL EQUILIBRIUM

$$\overrightarrow{F_a} + \overrightarrow{F_b} + \overrightarrow{F_c} = p \cdot s \cdot \frac{\overrightarrow{n_1} + \overrightarrow{n_2} + \overrightarrow{n_3}}{3}$$

Conclusion/perspectives

Membrane elastostatics

Membrane elastostatics

Add boundary conditions

$$(\sigma \cdot \vec{j}) \cdot \vec{n} = 0 \rightarrow$$
 In-plane traction
 $(\sigma \cdot \vec{j}) \cdot \vec{i} = 0 \rightarrow$ No shear

FINAL SYSTEM TO BE SOLVED

Stress field reconstructed without a constitutive model !!

Application to ATAA Methodology Conclusion/perspectives

Our methodology

[Romo A, Badel P, Duprey A, Favre J-P, Avril S. In vitro Analysis of Localized Aneurysm Rupture. J Biomech. 2014]

Conclusion/perspectives

Hyper-elastic model identification

Ecole Nationale Inverse identification

Supérieure des Mines

Application to ATAA

01/04/2014

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

Hyper-elastic model identification

Ecole Nationale Inverse identification

Supérieure des Mines

Application to ATAA

Conclusion/perspectives

Local identification method

Hyper-elastic model identification

 $A(\sigma', F)tan^2 \beta + B(\sigma', F) = 0$

Hyper-elastic model identification

Ecole Nationale Inverse identification Supérieure des Mines

SAINT-ETIENNE

$$\sigma'_{11} = 4\mathbf{k_1}\lambda_1^2 \cos^2(\beta) (\lambda_f^2 - 1) e^{\mathbf{k_2}(\lambda_f^2 - 1)^2}$$

Application to ATAA

SAINT-ETIENNE

Results

C Results: bi-directional experimental fitting

01/04/2014

Results

\square Results: β identification (typical result)

Application to ATAA Results

\bigcirc Results: k_1 and k_2 identification (typical result)

Very heterogeneous, ... choice of the model?

01/04/2014

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

Results: local identification: discarded elements

Quality of fit (classical criterion)

$$R^2 = 1 - \frac{SS_r}{SS_t}$$

Results

Conclusion/perspectives

 σ_{11}

2

3

(MPa)

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Thickness

Results

Conclusion/perspectives

Results: thickness evolution

Local thickness evolution (mm)

Rupture picture and area of interest (AOI)

Mesh

Four tests showing, a) the color map of the thickness measurement, b) the deformed mesh (\bullet = NodeMAX, \triangle = NodeTOP, \bigstar = NodeRUP) and c) the rupture picture and the area of interest (yellow circle). 01/04/2014

Pierre BADEL – Séminaire Modélisation et Calcul Scientifique - INRIA

Conclusion/perspectives

Application to ATAA

Able to

- detect weak zones prior to rupture. This questions the hypothesis of maximal stress at rupture!
- identify local elastic properties and rupture strength

Issues

- Choice of the model (sensitivity to induced anisotropy, heteregeneities)
- Choice of the hypotheses?

Perspectives

- Local rupture criterion.
- Microstructural investigations: what
- are the **determinants of rupture**???

- Macroscopic modeling from such evidence to address in vivo rupture risk assessment
- This would require in vivo stress reconstruction... FSI?

Still much to do!

MERCI

Special thanks

Stéphane Avril, Jérôme Molimard (colleagues)

Aaron Romo, Jin Kim, Alex Franquet, Laura Dubuis (students)

CHU Saint-Etienne, service chirurgie cardio-vasculaire : Jean-Pierre Favre, Ambroise Duprey, Jean-Noël Albertini

Thank you!