Séminaire Modélisation et Calcul Scientifique Irène Vignon-Clémentel & Martin Vohralik orgs. INRIA Rocquencourt – October 1 2013

Toward live CFD-computing interaction and visualization using GPU acceleration

Florian De Vuyst, Christophe Labourdette, Christian Rey

Centre de Mathématiques et de leurs Applications CMLA, CNRS UMR 8536

et

NVIDIA CUDA Research Center ENS CACHAN

devuyst@cmla.ens-cachan.fr

F. De Vuyst – INRIA Seminar Rocquencourt, Oct. 1 2013

Objectives

 Get PDE approximate solutions instantaneously (« real time », co-simulation)

• Be able to directly act on the computations

Possible tracks ...

 Reduced-order modeling (POD, PGD, reduced basis method)

 Multilevel modeling, surrogates High performance (parallel) computing Efficient algorithms, new paradigms (Lattice Boltzmann, ...)

 Parallel computing on workstations (GPU, coprocessors)

Toward GPU computing for PDE pbs – Outline

- 1. GPU hardware architecture
- 2. Performance drivers
- 3. Focus on Lattice Boltzmann Methods (LBM)
- 4. Real time flow interaction
- 5. Work in progress : LB thermal-fluid Boussinesq system
- 6. Suspension flows

Perspectives

1. GPU hardware architecture

nVIDIA GPU FERMI compute architecture

NVIDIA – KEPLER family (2013)

NVIDIA GeForce GTX 690 (game)

- 2 x 1536 cores, 300 W
- 8 streaming multiprocessors (SM)
- Memory bandwidth 192 GB/sec
- MEM 4 GB (2048 MB per GPU)
- DRAM bus memory 512-bit GDDR5
- 2x1.8 Tflops SP, 2x130 Gflops DP

NVIDIA TESLA K20X (HPC)

- 2688 cores, 250W !
- 14 streaming multiprocessors (SM)
- Memory bandwidth 250 GB/sec
- MEM 6 GB
- 3.95 Tflops SP, 1.31 Tflops DP !

2. GPU Performance drivers

Performance drivers

- Multiprocessor occupancy
- **Byte-per-flop** ratio (mem bandwidth vs FP operations)
- Memory management : registers, cache, coalesced read/write memory, fixed neighboring patterns reads/writes
- Warp divergence : be careful to trees of conditional branches
- Communication : host-to-device PCIe bus bottleneck

[Williams et al., Roofline : an insightful visual performance model for multicore architectures, Com. ACM, 2009]

Questions for the design of numerical methods :

- Explicit vs implicit ?
- Cartesian vs unstructured grid ?
- Order of accuracy *vs* grid size ?
- Specific vs undifferentiated treatment ? (interfaces, ...)
- Boundary conditions: embedded strategy ?
- How to achieve condensed stencil ?
- Operator splitting, alternating directions
- Change the model description ?
- Replace spatial derivatives by time derivative, particle derivative? ...

3. Focus on Lattice Boltzmann methods (LBM)

Lattice BGK (LBGK) model

Based on a simple discretization of the Boltzmann equation with BGK approximation for the collision term :

F. De Vuyst – INRIA Seminar Rocquencourt, Oct. 1 2013

Lattice D2Q9 BGK model

- D2Q9 unknows $f_i(x,t) \equiv f(x,ce_i,t), i \in \{0,...,8\}.$
- LB equation

$$f_i(x + c\boldsymbol{e}_i, t + \Delta t) = f_i(x, t) + \omega \left[f_i^{eq}(\rho(x, t), \boldsymbol{u}(x, t)) - f_i(x, t) \right]$$

• Requirements

$$\omega = \frac{1}{\tau}$$

$$\sum_{i \in \mathcal{S}} f_i^{eq}(\rho, \boldsymbol{u}) = \rho,$$

$$\sum_{i \in S} c \boldsymbol{e}_i f_i^{eq}(\rho, \boldsymbol{u}) = \rho \boldsymbol{u},$$

+ some discrete symmetry/ invariance conditions

$$\sum_{i\in\mathcal{S}}c^2\boldsymbol{e}_i\otimes\boldsymbol{e}_if_i^{eq}(\rho,\boldsymbol{u})=\rho\boldsymbol{u}\otimes\boldsymbol{u}+pI$$

F. De Vuyst – INRIA Seminar Rocquencourt, Oct. 1 2013

Practical implementation « stream-and-collide »

1. Streaming step

$$\tilde{f}_i(x,t) = f_i(x + c\boldsymbol{e}_i, t)$$

2. Collision step

- Compute the moments $(\rho, \rho \boldsymbol{u})(x, t) = \sum_{i \in S} (1, c\boldsymbol{e}_i) \tilde{f}_i(x, t)$
- Compute the equilibrium function $\tilde{f}_i^{eq} = \rho w_i [...]$
- Time advance

$$f_i(x,t+\Delta t) = \tilde{f}_i(x,t) + \omega \left[\tilde{f}_i^{eq}(\rho(x,t),\boldsymbol{u}(x,t)) - \tilde{f}_i(x,t) \right]$$

- Explicit method
- Underlying cartesian grid
- Fixed (small) stencil
- Elementary operations
- Very easy to implement

Particularly suitable for GPU computing

4. Real time visualization & flow interaction

Visualization & interaction

 Direct GPU compute/visualization binding (Pixel Buffer Object PBO) + OpenGL

- Dynamic mask array for adding/removing wall BC
- IR U-Pointer device for large screen interaction (seminars, conferences)

Android tablets for controls & GUI. Use of OSC for bidirectional communication between GPU-workstation and tablet (coll. K. Labourdette).

5. Work in progress : LB thermal-fluid Boussinesq system

Thermal + CFD coupling : Boussinesq model

$$\nabla \cdot \boldsymbol{u} = 0,$$

$$\partial_t \boldsymbol{u} + \boldsymbol{u} \cdot \nabla \boldsymbol{u} + \nabla p - \frac{\mu}{\rho_0} \Delta \boldsymbol{u} = \boldsymbol{g} \left(1 - \beta (T - T_0) \right),$$

$$\partial_t T + \boldsymbol{u} \cdot \nabla T - \nabla \cdot (\kappa \nabla T) = 0,$$

$$+IC + BC.$$

 $\mu, \alpha, \kappa > 0.$

Convection, diffusion, source term, coupling.

2D Lattice Boltzmann discretization

- D2Q9 LBGK lattice for fluid
- D2Q4 LBGK lattice for the thermal equation

Half-discretization (continuous in time) :

$$\partial_t f_i + c \boldsymbol{e}_i \cdot \nabla_x f_i = \frac{f_i^{eq} - f_i}{\tau \Delta t} - \frac{\boldsymbol{e}_i \cdot \boldsymbol{g}}{2c} \left(1 - \beta(T - T_0)\right)$$
$$(\rho, \boldsymbol{u}) = \sum_{i=0}^8 (1, \boldsymbol{e}_i) f_i, \ f_i^{eq} = f_i^{eq}(\rho, \boldsymbol{u})$$
$$\partial_t k_i + c \boldsymbol{e}'_i \cdot \nabla_x k_i = \frac{k_i^{eq} - k_i}{\tau' \Delta t}$$
$$T = \sum_{i=1}^4 k_i, \ k_i^{eq} = \frac{T}{4} \left(1 + 2\frac{\boldsymbol{u} \cdot \boldsymbol{e}'_i}{c}\right).$$

 e_i

F. De Vuyst - INRIA Seminar Rocquencourt, Oct. 1 2013

19

$$c = \frac{\Delta x}{\Delta t}.$$

Validation of the method

$$g = 9.81, Re = 2300, Pr = 0.71, Ra = 310^5, \nu = Re^{-1}, \kappa = \frac{\nu}{Pr}, \beta = \frac{Ra\,\nu\,\kappa}{gH^3\Delta T}$$

Collaborators : S. Faure, L. Gouarin, B. Graille (U. Paris-Sud Orsay)

Forseseen application : solar powered air conditioning

Design the chimney shape in order to reduce recirculating zones at the top and maximize the flow rate

(see [Chenier et al.], [Le Quéré, Sergent & co-workers] on the subject)

Work in progress

6. Suspension / sediment gravity flows

Suspension flows Boundary conditions, flux formulation [Dubois, Lallemand 2008] Conservative coupling $\frac{d\boldsymbol{x}_p}{dt} = \boldsymbol{u}_p,$ $\boldsymbol{x}_{p}, m_{p}$ $m_p \frac{d\boldsymbol{u}_p}{dt} = \int_{\partial S_p} \underline{\underline{\Sigma}} \underline{\nu} \, d\sigma.$

Exact trajectory approximated by a broken-line lattice path (random choice stochastic method)

> ==> Geometric elements and intersecting nodes computed once-for-all

Tensor computed from 2nd-order discrete moments

Perspectives

• Euler-Euler multiphase flows (suspension)

• Immiscible fluids with moving interfaces

NVIDIA outlook : 20 Tflops DP/GPU by 2018
 → real-time interactive 3D ?

• CPU-GPU convergence (be aware) ...

Acknowledgments

NVIDIA CUDA Research Center ENS Cachan

Institut fédératif FARMAN ENS Cachan

• Labex LMH Fondation Mathématique Hadamard FMJH

