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Spiking intelligence
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Does it matter ?
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Spiking technology
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The Evolution of Event Cameras
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Spiking Neural Networks

Perspective

Towards spike-based machineintelligence
with neuromorphic computing

https://doi.org/10.1038/s41586-019-1677-2 Kaushik Roy™, Akhilesh Jaiswal' & Priyadarshini Panda'
Received: 23 July 2018

Spiking Neural Networks: The next
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An early prediction of
the bottleneck of
digital technology...

Neuromorphic Electronic Systems

CARVER MEAD

Invited Paper

Biological information-processing systems operate on com-
pletely different principles from those with which most engineers
are familiar. For many problems, particularly those in which the
input data are ill-conditioned and the computation can be speci-
fied in a relative manner, biological solutions are many orders of
magnitude more effective than those we have been able to imple-
ment using digital methods. This advantage can be attributed prin-
cipally to the use of elementary physical phenomena as computa-

(IEEE Proceedings, 1990)
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A radical proposal

Neuromorphic Electronic Systems

CARVER MEAD

Invited Paper
Events

Spikes

technology: make the transistor a mixed device
(by exploiting its analog range)



Digital computation: a broken model ?
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Spiking intelligence: a control problem ?
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What makes it a control question ?

Spiking Control Systems, IEEE Proceedings, RS, 2021
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Animal vs Machine Intelligence:
the central question of cybernetics

- We have decided to call the entire field of con-
trol and communication theory, whether in the
machine or in the animal, by the name Cyber-
netics, which we form from the Greek yvBepvntng
or steersman. In choosing this term, we wish to
recognize that the first significant paper on feed-
back mechanisms is an article on governors,
which was published by Clerk Maxwell in 1868,
and that governor is derived from a Latin corrup-
tion of yuBepvntng.t

—NORBERT WIENER
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Adaptation Computation

A laptop computer resembles the human brain in volume and power use—
but it is stupid. Deep Blue, the IBM supercomputer that crushed Grandmas-
ter Garry Kasparov at chess, is 100,000 times larger and draws 100,000 times
more power (figure I.1). Yet, despite Deep Blue’s excellence at chess, it too is
stupid, the electronic equivalent of an idiot savant. The computer operates
at the speed of light whereas the brain is slow. So, wherein lies the brain’s

a@vantage? Principles of Neural Design, Sterling & Laughlin, MIT Press, 2017

11
Do brains compute ? RS, TedX talk, 2014




Control system

From Wikipedia, the free encyclopedia

For other uses, see Control system (disambiguation).

A control system manages, commands, directs, or regulates the behavior of other devices or systems using control loops. It can
range from a single home heating controller using a thermostat controlling a domestic boiler to large industrial control systems
which are used for controlling processes or machines.

<€or continuously modulated controDa feedback controller is used to automatically control a process or operation. The control
system compares the value or status of the process variable (PV) being controlled with the desired value or setpoint (SP), and
applies the difference as a control signal to bring the process variable output of the plant to the same value as the setpoint.

C For sequential and combinational Iog@ software logic, such as in a programmable logic controller, is used.

Choose your world: physics OR algorithmics

Different courses, different languages, distinct worlds ...



Physics
Physical
Embodied
Continuous
EE
Odes
Signals
Calculus

Circuits

Pre-1950

The Al gap

Algorithmics
Computational
Virtual
Discrete
CS
Automata
Data
Logics

Graphs

Post-1950



Reconciling physics and algorithmics

Physics Neuromorphics Algorithmics
continuous discrete
1 20
. 25 - .
physical ol (discrete) computational
> - 11 —
regulation _so | (continuous) automation
r e e
adaptation 0 100 200 decision-making
t

(a) The Dynamic Vision Sensor (DVS).

adaptive but unreliable adaptive and reliable reliable but inefficient



Spiking signals and systems
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with spiking signals ? _
IEEE Proceedings, 2022



A mixed feedback principle
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Classical control vs mixed control
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The mixed feedback amplifier

The fundamental device
for switches and oscillations
In the pre-digital age

LEON O.CHUA
CHARLES A.DESOER

ERNEST S.KUH
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Why do we care (Tedx Talk, 2014,
Annual Reviews 2018)

a Negative feedback : Open loop : Positive feedback
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Mixed feedback acknowledges the mixed nature of spiking



Fitzhugh Nagumo circuit
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A circuit that reproduces the mechanism of nerve impulse:

R. FitzHugh, “Impulses and physiological states in theoretical
models of nerve membrane,” Biophysical journal, vol. 1, no. 6, p. 445, 1961.

J. Nagumo, S. Arimoto, and S. Yoshizawa, “An active pulse
transmission line simulating nerve axon,” Proceedings of the IRE, vol. 50, no. 10, pp. 2061-2070, 1962.

Referred to as “Bonhoeffer-van der pol model” by FitzHugh after Van der Pol (1926). 20



The memory of FN circuit
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For a range of constant current,

bistable memory made of a capacitor (physical storage)
and a negative resistance device

4 Negative resistance
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The fading memory of FN circuit

— CV — _IL + Iea:t
R LjL:—IL+RV

A RLC circuit has fading memory:
the effect of a current impulse fades out with time.

The elements R, L, and C, shape the fading memory

If the ration C/L is small, a current impulse charges the capacitor almost
instantaneously, and the time constant L/R dictates the fading memory.

22



Spiking is a mixed mechanism

I
A e = L
L -
(O — T CV = kV - %3 _ IL T Ie:r,t
v ) Li, = —IL+RV
—— R
.

Transient switch =
Memory at ‘fine’ scale
Fading memory at ‘coarse’ scale

=)
=

What is ‘scale’ ? A mixture of amplitude and time ...

23



A mixed feedback representation of
Fitzhugh Nagumo circuit
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MIXED CONTROLLER

The negative feedback circuit has fading memory

The negative resistance = positive feedback = memory
The mixed feedback circuit has memory at fine scale
and fading memory at coarse scale



The neuromorphic promise

Mixed circuits
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The mixed feedback amplifier is not the concatenation of an automaton
and a physical system. It is a mixture of both.

Mixed feedback enables the combined reliability of the digital
and adaptation of the analog

Mixed feedback enables control across scales.

Sepulchre, Drion, Franci. Annual Reviews 2018



Cyber-physical systems in the digital age

Physical
systems

Automata

Cyberphysical systems interconnect elements that are
either automata or physical systems

Added complexity of automata and physical systems.

Instead, spiking control systems interconnect mixed elements,
that are both physical and algorithmic.

Mixed control systems inherit the tractability of classical control theory.



Today's talk

* An academic example of spiking control
 Event-based automation

« Event-based regulation
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Neuromorphic Control of a Pendulum

Raphael Schmetterling™, Graduate Student Member, IEEE, Fulvio Forni*™, Senior Member, IEEE,
Alessio Franci*, and Rodolphe Sepulchre™, Fellow, IEEE
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Fig. 4. Block diagram of the complete architecture, including the event-
based feedback loops introduced in Sections VI and VII. Small arrows
over signal transmission lines indicate event-based communication as
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Controlling when and where needed ...
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Fig. 4. Block diagram of the complete architecture, including the event-
based feedback loops introduced in Sections VI and VII. Small arrows
over signal transmission lines indicate event-based communication as
described in Section Ill. The HCO block architecture is described in
Sections Il and IV.

How often do you need to interact with a pendulum to control it ?
How energy efficient can you make a control system ?
How to make a control law soft yet accurate ?

How to make control design inherently distributed and redundant ?

Efficient control, RS, IEEE Control Systems, October 2024



Ingredients of a neuromorphic design

q(t) -0

[ |

o — 1 ==
motors JIII_IHL R a(t) - Ans
= I N i I T [
: j 9 6 a(t)=q, T =
Y ®o0 "1 LF
HCOs | , - F L
() —=( 2 pulse —
i) ™ e I_I I phase » N S A
L control
g _ SR I |t
g2 amplitude & | | || | | ||
frequency 3
adaptation | w’fj

Fig. 4. Block diagram of the complete architecture, including the event-
based feedback loops introduced in Sections VI and VII. Small arrows
over signal transmission lines indicate event-based communication as
described in Section Ill. The HCO block architecture is described in
Sections Ill and IV.

Feedforward module : a rhythmic automaton

Adaptation module : a tunable automaton

Key feature: co-design of the automaton and the regulator



Today's talk

* An academic example of spiking control
 Event-based automation

« Event-based regulation



The automaton of a periodic sequence
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The Half-Center-Oscillator: the harmonic oscillator of biology

Inter-burst frequency determines the frequency of the oscillator

Intra-burst frequency determines the energy of the events



Biological inspiration

)
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Passive RC circuit Current sources with localised conductance

A neuron is modelled as a “two-terminal one port” electrical circuit.
A leaky memory (RC) in parallel with a bank of current sources
Each current source has localised conductance

Current sources are mixed : they come by pairs



Neuromorphic circuit primitives
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Spiking neuron
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Ribar & Sepulchre, 2021



Bursting circuit

iapp

I — ip(V) Q,)f O

-

Passive membrane Fast exgitability Slow eintability

Vv
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Oscillator circuit
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Spatio-temporal network ‘states’
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Today's talk

* An academic example of spiking control
 Event-based automation

« Event-based regulation



The regulation of a periodic sequence
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Inter-burst frequency determines the frequency of the oscillator

Intra-burst frequency determines the energy of the events



Neuromodulation of an oscillator
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Fig. 4. Block diagram of the complete architecture, including the event-
based feedback loops introduced in Sections VI and VII. Small arrows
over signal transmission lines indicate event-based communication as
described in Section Ill. The HCO block architecture is described in
Sections Ill and IV.

Modulate the intra-burst or inter-burst frequency by adaptive control

= ‘Integral’ feedback of classical control



Neuromorphic Learning: Opportunities

Neuromorphic learning = adaptive control = neuromodulation

’ {
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EVE MARDER'S WORK IN
NEUROSCIENCE

Charlotte Nassim

50 years of research in engineering and in neuroscience to leverage from ...



Adaptive Control

Chapter 1 What Is Adaptive Control?

B

w| Parameter
adjustment g

Controller
parameters

——l= Output
Controller - Plant
—— - Control

signal

Seipoint

Figure 1.1 Block diagram of an adaptive system.

A theory developed in the 70s for linear systems.

The starting point :

Adaption (= Learning) is ‘easy’ under three conditions :
(i) linear parametrisation (ii) stable inverse (iii) relative degree one



Mixed feedback circuits are “easy” to adapt

9 1
One layer ﬂ v
1 I, Ipy RC -

cu

Network

The starting point :

Adaption (= Learning) is ‘easy’ under three conditions :
(i) linear parametrisation : maximal conductances

(ii) stable inverse : | = difference of monotone (V)

(ili)relative degree one: RC has relative degree one !



Model reference Adaptive Control

9 1
One layer ﬂ v
1 I, Ipy RC -

cu

Network

Consider a reference trajectory (I(-), Vier(+))
generated by a reference conductance g,

The learning rule is a linear regressor driven by the prediction error

e(t) = Vier(t) = V(1)



A realm of learning rules

Recursive Least Squares estimation (RLS)
Least Mean Square estimation (LMS)
Stochastic gradient

MIT rule

Hebbian learning

All those learning rules proceed from (approximately) regressing the linear
parameters from the residual error.

Simplifications rely on time-scale separation and distributed computation.



‘Continuous’ regulation is unreliable

A pillar of requlation theory is the internal model principle:

An external signal can be robustly asymptotically regulated only if the
regulator can generate this signal internally.

For ‘continuous’ regulation, the internal model principle is a calibration
principle: exact regulation requires exact calibration of the internal model.

Regulation is good for adaptation, but continuous regulation is unreliable



An event-based internal model principle

The original formulation of the internal principle refers to “events”, NOT to
“continuous trajectories™:

Only an internal model of reality - this working model in our minds- enables
us to predict events which have not yet occured in the physical world, a
process which saves time, expense, and even life. In other words the
nervous system is viewed as a calculating machine capable of modelling or
paralleling external events, and this process of paralleling is the basic
feature of thought and of explanation

The

Kenneth Craik’s, The Nature of Explanation (1943) Nature of

Explanation

KENNETH
CRAIK




An academic example of event-based regulation
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* The internal model does not need to generate the external
trajectories, but only the external events

* The generator of events is a physical neuromorphic circuit. Easily
calibrated.

* A possible reconciliation between control theory and neuroscience...
49



Synchrony without calibration
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Fig. 1. Rapid synchronization of two identical (a) and non-i-
dentical (b) excitable systems under weak excitatory synap-
tic coupling. (c¢) Poor synchronization of the same non-iden-
tical excitable systems under strong diffusive coupling.

Rapid and robust synchronization via weak synaptic coupling, J.-G. Lee, RS, Automatica, 2024

Event-based learning = regulation without calibration !



The reliability experiment
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Fig. 1. Reliability of firing patterns of cortical neurons evoked by constant and fluctuating current. (A) In
this example, a superthreshold dc current pulse (150 pA, 900 ms; middle) evoked trains of action
potentials (approximately 14 Hz) in a regular-firing layer-5 neuron. Responses are shown superimposed
(first 10 trials, top) and as a raster plot of spike times over spike times (25 consecutive trials, bottom). (B)
The same cell as in (A) was again stimulated repeatedly, but this time with a fluctuating stimulus [Gaussian
white noise, n, = 150 pA, o, = 100 pA, 7, = 3 ms; see (74)].

Mainen & Sejnowski, Science, 1995

Event-regulation can be made reliable !



The reliability experiment in silico
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(b) Fluctuating current input.

Neuromorphic regulation can be made reliable !

Kirby, Ribar & Sepulchre, unpublished, 2022




Today's talk

An academic example of spiking control
Event-based automation
Event-based regulation

Concluding remarks



Spiking Control Systems
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Spiking is the result of mixed feedback control.
Positive feedback is necessary for automation: memory, decision-making.
Negative feedback is necessary for regulation: fading memory, adaptation.

Mixed feedback enables reliability AND adaptation



Neuromorphic
control

Neuromorphic Control

ChirolSystems ¢ IEEE

Society:

Neuromorphic control is mixed:
co-design of automation and regulation

The automaton is a physical circuit that generates discrete events

The regulator is a feedback loop that endows the automaton with
adaptation and learning capabilities



Reconciling physics and algorithmics ?

Physics Physical Computation Algorithmics
Physical Neuromorphic Computational
Continuous Event-based Discrete
EE Bio-inspired CS
Odes Spiking Automata
Analysis Convex-concave Logics
Signals Events Data
Circuits Interactions Graphs

19th century 21th century ? 20th century



Carver Mead

Neuromorphic computing

A machine that awaits
a theory

Physical computation

Richard Feynman

Quantum computing

A theory that awaits
a machine

John Hopfield

Collective computing

A theory that awaits
a theory

57



Spiking Intelligence

* There is no intelligence without feedback.
« Spiking is the result of mixed feedback.

* Mixed feedback technology aims at addressing the Al gap.

BI' Rddolp‘he Sepulchre: Mixed Feedback
Control

BRAIN INSPIRED/ BrainInspired

PODCAST EPISODE

ep9 - Rodolphe Sepulchre: Spiking control

cinControlH  systems, nonlinear control, neuroscience and
optimization on manifolds
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