The Legacy of Rudolph Kalman Blending Data and Mathematical Models

Andrew Stuart

Computing and Mathematical Sciences California Institute of Technology

AFOSR, DARPA, EPSRC, NSF, ONR Allen Philanthropies, Mission Control for Earth, Schmidt Futures

Jacques Morgenstern Colloquium, INRIA

March 28th 2019

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Overview

Historical Context: Celestial Mechanics

Kalman State Estimation

Weather Forecasting

Enemble Kalman Inversion

Theory For EKI

Training Neural Networks

Conclusions and References

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Historical Context: Celestial Mechanics

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Brahe

Purely observational data – initially by eye. "Big data" c. 1600s.

Kepler

Mathematical formulae which interpolated Brahe's data. Kepler's Law – a "data-driven model."

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Newton

Kepler's Law emerge from Newtonian mechanics. Led to theory of conservation laws.

(ロ)、

Einstein

Discrepancy between data and prections of Newtonian mechanics (Mercury perehilion). Resolved by special, and then general, relativity.

Kalman State Estimation

・ロト・日本・ヨト・ヨー うへの

Kalman Filter

State Space Model

Dynamics Model: $v_{n+1} = Mv_n + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- Born: Budapest, May 19, 1930.
- Died: Florida, July 2, 2016.
- BS and MS from MIT, 1953, 1954.
- Positions at Stanford, ETH, U of Florida.
- US National Academy of Engineering 1991.
- US National Academy of Sciences 2004.
- US National Medal of Science 2008.
- Draper Prize, Kyoto Prize, Steele Prize

Kalman Filter

State Space Model

Dynamics Model: $v_{n+1} = Mv_n + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- J. Basic Engineering 82(1960); see [1].
- 29,946 Google Scholar citations; 27/3/19.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Navigational and guidance systems.
- Apollo 11.
- $Y_n = \{y_\ell\}_{\ell=1}^n$.
- \triangleright $v_n | Y_n \sim N(m_n, C_n).$
- $\blacktriangleright (m_n, C_n) \mapsto (m_{n+1}, C_{n+1}).$

Kalman Filter

Sequential Optimization Perspective

 $\begin{array}{ll} {\sf Predict:} & \widehat{m}_{n+1} = Mm_n, & n \in \mathbb{Z}^+ \\ {\sf Model/Data \ Compromise:} & J_n(m) = \frac{1}{2} |m - \widehat{m}_{n+1}|^2_{\widehat{C}_{n+1}} + \frac{1}{2} |y_{n+1} - Hm|^2_{\Gamma} \\ {\sf Optimize:} & m_{n+1} = \operatorname{argmin}_m J_n(m). \end{array}$

•
$$|\cdot|_A = |A^{-\frac{1}{2}} \cdot |$$
 for $A > 0$.

- Updating \widehat{C}_{n+1} is expensive: $\mathcal{O}(d^2)$ storage.
- ▶ *d* the state space dimension $(m_n, v_n \in \mathbb{R}^d)$.

3DVAR Filter

State Space Model

Dynamics Model: $v_{n+1} = \Psi(v_n) + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- Introduced in UK Met Office.
- Primary proponent: Andrew Lorenc.
- Quart J. Roy. Met. Soc. 112(1986).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- J. Met. Soc. Japan 99(1997).
- $\blacktriangleright \{v_n\} \mapsto \{v_{n+1}\}.$

3DVAR

Sequential Optimization Perspective

$$\begin{array}{ll} {\sf Predict:} & \widehat{v}_{n+1} = \Psi(v_n), & n \in \mathbb{Z}^+ \\ {\sf Model/Data \ Compromise:} & J_n(v) = \frac{1}{2} |v - \widehat{v}_{n+1}|_{\widehat{C}}^2 + \frac{1}{2} |y_{n+1} - Hv|_{\Gamma}^2 \\ {\sf Optimize:} & v_{n+1} = {\rm argmin}_v \ J_n(v). \end{array}$$

- \hat{C} is a fixed model covariance (not updated sequentially).
- \widehat{C} chosen to have simple, computable, structure (Fourier).

Ensemble Kalman Filter

State Space Model

Dynamics Model: $v_{n+1} = \Psi(v_n) + \xi_n$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = Hv_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$ Probabilistic Structure: $v_0 \sim N(m_0, C_0)$, $\xi_n \sim N(0, \Sigma)$, $\eta_n \sim N(0, \Gamma)$ Probabilistic Structure: $v_0 \perp \{\xi_n\} \perp \{\eta_n\}$ independent

- Introduced by Geir Evensen.
- J. Geophysical Research 99(1994).
- Motivated by extended Kalman filter; see [2].
- Jazwinski (1970) [3], Ghil et al (1981) [4].
- Original paper in ocean dynamics.
- Used in weather forecasting centres worldwide.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

• $\{v_n^{(j)}\}_{j=1}^J \mapsto \{v_{n+1}^{(j)}\}_{j=1}^J.$

Ensemble Kalman Filter

Sequential Optimization Perspective

$$\begin{array}{ll} {\sf Predict:} & \widehat{v}_{n+1}^{(j)} = \Psi(v_n^{(j)}) + \xi_n^{(j)}, & n \in \mathbb{Z}^+ \\ {\sf Model/Data \ Compromise:} & J_n^{(j)}(v) = \frac{1}{2} |v - \widehat{v}_{n+1}^{(j)}|_{\widehat{\mathcal{C}}_{n+1}}^2 + \frac{1}{2} |y_{n+1} - Hv|_{\Gamma}^2 \\ {\sf Optimize:} & v_{n+1}^{(j)} = \operatorname{argmin}_v \ J_n^{(j)}(v). \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$\widehat{C}_{n+1}$$
 is empirical covariance of the $\{\widehat{v}_{n+1}^{(k)}\}$.

• Updating \widehat{C}_n requires only $\mathcal{O}(Jd)$ storage.

Weather Forecasting

w/Law [7]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Weather Forecasting: Data

courtesy Roland Potthast(DWD)

Data Fails to Overcome Butterfly Effect

KJH Law and AM Stuart, Monthly Weather Review, 2014.

イロト 不得 トイヨト イヨト

э

Theory Backed use of Data Overcomes Butterfly Effect

KJH Law and AM Stuart, Monthly Weather Review, 2014.

イロト イヨト イヨト

Impact of EnKF over 3DVAR

courtesy Roland Potthast(DWD)

Ensemble Kalman Inversion

w/lglesias and Law [9]

w/Schillings [10]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Inverse Problem

Problem Statement

Find u from y where $G : U \mapsto Y$, where U, Y are Hilbert spaces, η is noise and

 $y = G(\mathbf{u}) + \eta, \quad \eta \sim N(0, \Gamma).$

Optimization
$$\Phi_R(u) = rac{1}{2} \|y - G(u)\|^2 + R(u);$$
 Probability $e^{-\Phi_R(u)}$.

J. Franklin (1970) イロトイクトイミトイミト ミークへで

Inverse Problem

Dynamical Formulation

Dynamics Model: $u_{n+1} = u_n$, $n \in \mathbb{Z}^+$ Dynamics Model: $w_{n+1} = G(u_n)$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = w_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$

- ► $y_{n+1} = y$, $\eta_{n+1} \sim N(0, h^{-1}\Gamma)$.
- Evensen moved to Statoil.
- Methodology widely used in oil industry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- Also in groundwater flow.
- Gier Nævdal 2001, 2002.
- Oliver, Reynolds, Liu (2008) [5].

EKI Algorithm

Dynamical Formulation

Dynamics Model: $u_{n+1} = u_n$, $n \in \mathbb{Z}^+$ Dynamics Model: $w_{n+1} = \mathsf{G}(u_n)$, $n \in \mathbb{Z}^+$ Data Model: $y_{n+1} = w_{n+1} + \eta_{n+1}$, $n \in \mathbb{Z}^+$

State Space Estimation Formulation

 $\begin{array}{ll} \text{Reformulate:} \quad v = (u, w), \quad \Psi(v) = (u, \mathsf{G}(u)), \quad H = (0, I) \\ \text{Dynamics Model:} \quad v_{n+1} = \Psi(v_n), \quad n \in \mathbb{Z}^+ \\ \text{Data Model:} \quad y_{n+1} = Hv_{n+1} + \eta_{n+1}, \quad n \in \mathbb{Z}^+ \end{array}$

Employ Ensemble Kalman Filter with $y_{n+1} \equiv y$.

Theory For EKI

w/Garbuno-Inigo, Hoffmann, Li [8]

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The Scheme

EKI: Discrete Time

$$u_{n+1}^{(j)} = u_n^{(j)} + C_n^{uy} (C_n^{yy} + \Gamma)^{-1} \left(y_n^{(j)} - G(u_n^{(j)}) \right), \quad u^{(j)}(0) = u_0^{(j)}.$$

 $\overline{\cdot}$ denotes ensemble average. $u_n^{(j)} \approx u^{(j)}(nh), \Gamma \mapsto h^{-1}\Gamma$ and $h \to 0$:

EKI: Continuous Time Limit

$$\dot{u}^{(j)} = -\frac{1}{J} \sum_{k=1}^{J} \left\langle G(u^{(k)}) - \bar{G}, G(u^{(j)}) - y \right\rangle_{\Gamma} \left(u^{(k)} - \bar{u} \right), \quad u^{(j)}(0) = u_{0}^{(j)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Approximate Gradient Structure

Make linear approximation:

$$G(u^{(k)}) = G(u^{(j)}) + dG(u^{(j)})(u^{(k)} - u^{(j)}).$$

EKI Invoking Linear Approximation

$$\dot{u}^{(j)} = -\frac{1}{J} \sum_{k=1}^{J} \left\langle dG(u^{(j)})(u^{(k)} - \bar{u}), G(u^{(j)}) - y \right\rangle_{\Gamma} \left(u^{(k)} - \bar{u} \right), \quad u^{(j)}(0) = u_{0}^{(j)}$$

Least Squares Functional

$$\Phi(u)=\frac{1}{2}\|y-G(u)\|_{\Gamma}^2.$$

Gradient Structure

$$\dot{u}^{(j)} = -C \nabla \Phi(u^{(j)}),$$
 $C = \frac{1}{K} \sum_{k=1}^{K} (u^{(k)} - \overline{u}) \otimes (u^{(k)} - \overline{u}).$

Exact Gradient Structure

• Linear Case
$$G(\cdot) = A \cdot .$$

Least Squares Functional

$$\Phi(u)=\frac{1}{2}\|y-Au\|_{\Gamma}^{2}.$$

Gradient Structure

$$\dot{u}^{(j)} = -C
abla \Phi(u^{(j)}),$$
 $C = rac{1}{K} \sum_{\ell=1}^{K} (u^{(\ell)} - \overline{u}) \otimes (u^{(\ell)} - \overline{u}).$

Theorem (Gradient Structure) [10]

Flow minimizes $\Phi(\cdot; y)$ over a finite dimensional subspace defined by the linear span of the initial ensemble $\{u_0^{(j)}\}_{j=1}^J$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Noisy EKI

Add Noise

Gradient flow plus noise:

$$\dot{u}^{(j)} = -\mathbf{C}\nabla\Phi(u^{(j)}) + \sqrt{2\mathbf{C}}\dot{W}^{(j)},$$

Approximate gradient flow plus noise:

$$\dot{u}^{(j)} = -C \nabla_{\mathrm{approx}} \Phi(u^{(j)}) + \sqrt{2C} \dot{W}^{(j)},$$

Empirical Covariance:

$$C = \frac{1}{K} \sum_{\ell=1}^{K} (u^{(\ell)} - \overline{u}) \otimes (u^{(\ell)} - \overline{u}).$$

Mean Field Limit

 $J \rightarrow \infty$.

Gradient flow plus noise:

$$\dot{u}^{(j)} = -\frac{\mathcal{C}\nabla\Phi(u^{(j)})}{\sqrt{2\mathcal{C}}}\dot{W}^{(j)},$$

Empirical Covariance:

$$\mathcal{C} = \int (u - \overline{u}) \otimes (u) - \overline{u}
angle
ho(u) du, \quad \overline{u} = \int u
ho(u) du.$$

Nonlinear Fokker-Planck (NLFP) Equation

$$\partial_t \rho = \nabla \cdot (\rho \, \mathcal{C}(\rho) \nabla \Phi_R(u)) + \, \mathcal{C}(\rho) : D^2 \rho \, .$$

Theorem (Kalman-Wasserstein Gradient Structure) [8]

The Gibbs measure $\rho_{\infty} \propto \exp(-\Phi(u))$ is an equilibrium solution of the NLFP equation. If C is bounded below uniformly in time as an operator then $\|\rho - \rho_{\infty}\|_{L^1} \to 0$ exponentially fast as $t \to \infty$. In particular this condition is satisfied for the linear inverse problem.

Training Neural Networks

w/Kovachki [11]

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Supervised Learning

Inverse Problem

- ▶ **Data**: $\{(x_j, y_j)\}_{j=1}^N$ with $x_j \in \mathcal{X}$, $y_j \in \mathcal{Y}$ and \mathcal{X}, \mathcal{Y} Hilbert spaces.
- ▶ Find: $\mathcal{G}(u|\cdot) : \mathcal{X} \to \mathcal{Y}$ for parameter $u \in \mathcal{U}$ consistent with the data.
- ► Concatenate x, y and G(u|·) :

 $y = G(u|x) + \eta$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

where $G(\cdot|x) : \mathcal{U} \to \mathcal{Y}^N$ and η is model or data error.

Supervised Learning

Key Issues

- Approximation: design of G(·|x_j);
- **Optimization**: choosing *u* to fit data $\{(x_j, y_j)\}_{j=1}^N$;
- **Stability**: ability of $G(\cdot|x^*)$ to predict well for out of sample x^* .

Architecture, training and generalization.

MNIST Dataset

LeCun and Cortes 1999.

イロト 不得 トイヨト イヨト

3

MNIST Supervised

Figure: Test Accuracy of Net 1 on MNIST (batched).

J	Loss	Momentum	Randomize y	Randomize <i>u</i>
5000	Cross Entropy	\checkmark	\checkmark	χ
		-	▲ □ ▶ ·	(四)(回)(回)

200

Conclusions and References

▲□▶ ▲□▶ ▲国▶ ▲国▶ ▲国 ● のへで

Conclusions

- Kalman's 1960 paper revoltionized applied mathematics.
- Evensen's 1994 paper introduced a step change in applicability.
- Both state estimation and inverse problems maybe solved.
- Aerospace guidance · · ·
- Oceanography, weather forecasting, climate ...
- Geophysical and medical imaging.
- Machine Learning.
- Mean Field Limit: novel Kalman-Wasserstien gradient flow.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

References

[1] R. Kalman and R. Bucy.

A new approach to linear filtering and prediction problems Journal of Basic Engineering, 82(1961), 95–108.

[2] G. Evensen.

Data Assimilation: The Ensemble Kalman Filter. Springer, 2006.

[3] A.H. Jazwinski.

Stochastic Processes and Filtering Theory.

[4] M. Ghil, S.E. Cohn, J. Tavantzis, K. Bube, and E. Isaacson.

Application of estimation theory to numerical weather prediction.

Dynamic Meteorology: Data Assimilation Methods, L. Bengtsson, M. Ghil and E. Källén, Eds. Springer, 139–224, 1981.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

[5] D.S Oliver, A.C. Reynolds and N Liu

Inverse theory for petroleum reservoir characterization and history matching CUP 2008

References

[6] A. M. Stuart

Inverse Problems: a Bayesian perspective *Acta Numerica*, **19**(2010).

[7] K.J.H. Law and A.M. Stuart

Evaluating Data Assimilation Algorithms. Monthly Weather Review, **18**(2014), 181-217.

[8] A. Garbuno-Inigo, W. Li, F. Hoffmann and A.M. Stuart

Gradient Structure For The Ensemble Kalman Flow With Noise, arXiv:1903.08866.

Ensemble Kalman method for inverse problems, Inverse Problems, 29 (4), 045001, 2013.

[10] C. Schillings, A. M. Stuart

Analysis of the ensemble Kalman filter for inverse problems, arXiv:1602.02020, SIAM Num. Analysis 55(2017).

[11] N.B. Kovachki, A.M. Stuart

Ensemble Kalman Inversion: A Derivative-Free Technique For Machine Learning Tasks, arXiv:1808.03620.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで