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From life science... to data science
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Naturalist approach

Experimental approach  Modern biology
= Qbserving and = Perturbating and !
deducing observing

Measuring at lower
scales

mmmmm) Data science !
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Biomolecular data: genomes

Genome sequencing Thousands of publicly available
= Very smart computational genomes
Issues = Exploration, mapping and

= Bioinformatics analysis
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What do we do with genomic data ?

transcription translation activity - function o
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Assign a function to each DNA fragment

Develop new technologies to validate/refine the assigned functions

DNA sequencing, genetic profiling, genetic mapping, recombinant
DNA technology, structural and functional analysis of genome

Protein identification,
quantification, post-
translational

RNA sequencing,
expression profiling,
transcriptional

Genomics

regulation Transcriptomics Proteomics ) modification
; Study metabolite D d I
Element ) | profiles, H ata e uge !
profiling, ) metabolic
biochemical intermediates,
regulation, hormones and

element
interactions

other signaling
molecules

Evaluation of morphological, biochemical and physical traits,
establish link between genetic, epigenetic and environmental factors
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= . . immunology genomics
Life science data nightmare 5% g nanotechnology animals
- Sbudgphgsuologg cell I epsgchologg
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— Four domains of Big Data in 2025: ‘Um%ﬂ : 5
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biotechno

(inspired by [Ste2015]) — science
Heterogeneity

Incompleteness

. N
Different scales of ASTRONOMY
granularity
Inter- ‘ TWITTER W g N
dependencies YOUTUBE
UANTITY
17 PB/year 1-2 EB/year 40 EB/year

Data characteristics
= Large-scale

= |ncomplete

= |nter-dependent

= Heterogeneous / multi-scale

mmmmmm)  How to integrate them?
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SYSTEMS BIOLOGY

Bioinformatics

Systems biology
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Setting all together

Gene mRNA Protein Metabolites
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Genomics | Metabt;lomics |
Patti et al. (2012), Metabolomics: the apogee of the omics trilogy. Nature
Gene function = regulation of a intra-cellular transformation procedure
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What we get...
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Systems biology

Statement : biology is a complex system

» « Requires to examine the structure and dynamics of a cellular function
rather than the characteristics of isolated parts of a cell »

Large-scale
organization

Functional modules

ATP .\I=
R

aoe % ) "0
-" T \\ - -‘-Li :H-&’:- ;—drr_\,.
Regulaton,r motifs Metabolic pathwa ys

Genes mRNA Proteins Metabolites A Y
_—---u_-

Information storage Processing Execution

Systems biology: Interpreting multi-layer data and graphs
» Produce predictive statements that can be experimentally validated
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Case-study: extremophile mining consortium

Role of an empirical taylor-made consortium of bacteria in
copper extraction from ore ?

Data

- Genomes Turn data into
- Expression data e genomics maps
- Metabolic compounds * interaction maps

Understand the contribution of each bacteria to the complete system ?
» integrative and systems biology
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A second case-study : algal metabolism

w‘l Station Biologique
g®W de Roscoff

E. siliculosus In axenic condition....

Ectocarpus
[Dittami2014, Tapia2016]

What is the role of environmental bacteria ?
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Dynamical systems |

Historical motivation
Model the evolution of the set of components in a system according to

time.
T x S — S
F: i . 2 —  F(t,2)
(time , state) new state at time ¢
ax __k X)1-Y
g
E=L+Xn—by f(Y)(—l—X
) Boolean model with
Parameterized
. asynchronous update
numerical system
scheme

Identification of a dynamical system

Find the best function F which parcimounously explains and
describes the observed responses of a system.
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Model identification since the 18th century

What has always allowed a model identification

» A priori knowledge about the laws governing the system
» Predetermined shape for the function F

» Limited number of components - gf % S) - ?__( \
. . t , & by tz
» Reduction of the search space (ime . state) new state at time ¢

» Wide panel of sensors and perturbations
» Discriminate parameters

Where is the complexity ?

» The search space grows exponentially with the number of
measured compounds

; The more compounds we measure,
the less identifiable a system is.
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Differences between application domains

Physical sciences Biological sciences

> Knowledge. — > Knowledge.
Fundamental laws of physics. Empirical laws

> Sensors.

Low quality although numerous.

Various protocoles in controled Quite few according to sensors
frameworks.

> System description. =————— > System description.
Independent components Hidden dependencies
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Today’s molecular/cellular biological systems

Gene mRNA Protein Metabolites

Omics data. g, o
A N R, :
> Large-scale oo ‘%L\%
I ’AXWJ. “w
> N OISy Mu:arion: [pig_ef:mti_c Pos:i-_tﬁrans_criptional Posg_tf:ans:la!ional
» Heterogeneous. e s ==
Patti et al. (2012). Metabolomics: the apogee of the omics trilogy. Nature
| LEVELS OF Four domains of Big Data in 2025:
COMPLEXITY complexity vs quantity
g _y - Heterogeneity _
characteristics
> Large_scale Incompleteness / :
> E m p | r| Cal IaWS Different scales of ‘ AsSTRONOMY
ranularit
> Few data wrt the search Ny
space size - TWTE e
UANTITY
17 PB/year 1-2 EB/year 40 EB/year |

Biological systems observed with omics data
are not uniquely identifiable
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Strategy: combine dynamical systems and
constraints programming

Describe a system by a family of abstract models
» Reason over a family of models instead of
selecting a single one

(Logical) knowledge representation
» Search space description
» Structured knowledge (link open data)

Discrete dynamical systems
» Links between multi-scale observations.

> Invariants of model families.

Solving optimisation problems
» Replace laws by constraints
» Extract robust information
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KNOWLEDGE REPRESENTATION

1{murderer(ms_Scarlet); murderer(colonel Mustard)}1l.
1{weapon_of crime(revolver); weapon_of crime(candlestick)}1.
1{place_of crime(kitchen); place of crime(hall);

place of crime(dining room)}1.

crim_record(ms_Scarlet,7). crim_record(colonel Mustard,4).

weapon_of crime(candlestick).
- place _of crime(kitchen).
place of crime(hall) :- murderer(colonel Mustard), not

weapon_of crime(revolver).
sol(X,Y,Z) :- murderer(X),weapon_of crime(Y),place of crime(2).
#maximize{W , sol : sol(X,Y,Z2) , crim_record(X,W) , murdered(W)}.

#show sol/3.
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Solving combinatorial problems

Problem Solutions

Problem Solutions @
ﬂSpecification ‘ Specify Interpretanonl

%

_ Interpretatlon
programming

' Set of formulas
How to solve binary program Outputs
lat Solving
compilation execution

ite (boolean, linear)
nstraints (SAT, ILP.,...)

Write a program whic
how the problem sho

Problem : Solutions

ﬂModeIing Interpretationl

Problem
representation
(logicl language)

D rative programing

Answer set programming. > Problem = axioms & rules
D i i
escribe what you want to solve > No need of algorithm
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ASP logical rules : declarative programming

K { atomy; ...; atom, } L :- atom,.1;...; atom,; not atom,.i; ..., not atoms .
head ey body
If all terms on the right side are true,

then at least K and at most L terms are true
on the left side.

If nothing on the left side, If nothing on the right side,
then always false. then always true.
- K{atoml, .. atomN}L. K{atoml, .. atomN}L.

Optimisation rule
#maximize{W,atom(X): condition(X),W}.

High-level model language Highly performant solving technics
> Propositional logics » SAT-based and deductive-DB technics

> Model for negation » Decidable: no infinite loop
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Link with systems biology ?

Integrative and systems biology is a very relevant field to
challenge ASP technologies

» Repair large-scale interaction graph with branch

and bound solving heuristics
Problem statement

> Scale metabolic network completion problem with & modelling
unsatisfiable core solving strategy KyLiSS P
» Design experiments with incremental solving C )

AVEIrsyz..
ST Ml

» Implement and benchmark constrains propagators

*.0d
. &
ar

|

Linear constrains atoms Solving heuristics
& problem reformulation

&sum{al*xl;...;al*x1} <= k
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Application: extremophile mining consortium

Role of an empirical taylor-made consortium of bacteria in
copper extraction from ore ?

5 thermosulfidonxidans.

DSM 9283
(Travisany, 2012)

« NAD(H) biosynthesis metabolic pathways
of A. Cryptum complements metabolic functions
spread between the five strains »

ASP program
-> graph alignment / static modeling

-> chains of reactions explaining the capability of the consortium to
produce the compounds (| PNRV'3, Microbiology open’5)
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BACK TO DYNAMICAL SYSTEMS

LEVELS OF Four domains of Big Data in 2025:
COMPLEXITY complexity vs quantity
Biological systems (inspired by [Ste2015])
g .y = Heterogeneity _
characteristics

> Large-Scale Incompleteness ) i

> E m p | r| Cal IaWS Different scales of ‘ ASTRONOMY
ranularit

> Few data wrt the search Y

space size - TWTE e
UANTITY
17 PB/year 1-2 EB/year 40 EB/year |

Biological systems observed with omics data
are not uniquely identifiable
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Underlying tool : from genes to dynamical systems

1 genome
e ] = 1 metabolic network
v = bipartite directed graph

W Transcriptome

ltranslation

Proteome

O Compound . Reaction

Link between genes

: Large scale metabolic network
and functions

All expected metabolic capabilities of an organism
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How to model fluxes ?

, %=—V1—V2+V3+b1 d
— X
fon 5y
Syst &: fmy — Vo — V4 — dt
b boundary A

v([substrat]) =Vm[Substrat]/ (Km +[Substrat])

Back to high school chemistry
» Two parameters have to be estimated for each reaction

Intractable in practice !
» QOverapproximation of the dynamics
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Quasi-steady state hypothesis

Q}/yb %=S-v(x) — ()

" y([substrat]) =Vm[Substrat] / (Km +[Substrat])

= constant
Metabolic compounds do not accumulate r is active if
» Fluxes have constant values v, >0 and
» Fluxes are constrained by linear values s.v =0 and
> The system optimises a global objective Ib<v <ub

Replace kinetic constants by global optimisation hypotheses
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Growing phase hypothesis

Functionality: recursive graph-based semantics

@ Seeds = growth medium

“and” condition checked recursively

® Non-producible metabolite

Metabolite reachable from the seeds

Reaction

scope(M):- seed(M).
scope(M):- product(M,R), reaction(R), scope(M) : reactant(M,R).

Study paths in hypergraphs
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Everything is a matter of choices

(s) (F —rx—>(c) Accumulation of G?
Activation? OO0

Activation?

Stoichiometry - ratio B/A

The reaction status of the reactions is different according

to the approximation
» No choice but dealing with such overapproximation !
» Use the flexibility of ASP language to handle these questions
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APPLICATION TO NETWORK COMPLETION
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Data incompleteness

— o
-
=N (3!

Metabolic networks built from NGS sequencing
» Nno possible biomass production.
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Gapfilling a metabolic network (nutshell)
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Gapfilling a metabolic network (nutshell)

Seeds

I Draft network

: Database

Target
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Gapfilling a metabolic network (nutshell)
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Gapfilling a metabolic network (nutshell)
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Gapfilling a metabolic network (nutshell)

Seeds

I Draft network

: Database

Target
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Gapfilling a metabolic network

What we have
» Graph with non-accessible target components

» Knowledge database of possible edges

(CO—) C Experimentally Putatlve.
(O—>@ observed interactions
~ 4 - compounds - — from knowledge
C - ol <5 . databases
D @ I
v
D @ [ 548

Media compounds - \/U
Gap-filling problem: O—»O D

» Restore target accessibility 4_('; S
> Minimal number of reactions " v
gapfilling(S, R, G4, Gpg) =

size(reactants(Ry) \ scope(Gy U{R;..R,})
size{R;..R,,}

arg min
{Ri"Rm}CGDB
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Meneco: ASP-based gap-filling for non-model organisms

Hybgapfllllng(S, RT' Gll GDB)

J tants(R G, U{R;..R
arg min <SlZ€(T‘€aC ants( .T) \ scope(G; U {R; m}))
{Ri"Rm}CGDB Slze{Rl' - Rm}

{reaction(r)}.-

scope(M):- seed(M).

scope(M):- product(M,R), reaction(R), scope(M) : reactant(M,R).
- target(T), not scope(T).

#minimize{ reaction(r) }.

Size of gap-filling solutions (log scale)

16 reactions in average are

0 0,5 1

sufficient to restore degraded stochastic _
bacterial networks v I |
» MILP-based approaches required ;

from 200 to 4000 reactions. Asp N

1

1

|

1

1

1

|

1

1,5 2 |25 3 3,5
1

1

16 208 3960

Benchmark of 10,800 bacterial networks
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Example of application
» Genome: 1785 reactions, 1981 compounds

» 54 metabolites to produce:
» 25 are graph-based producible
» None is FBA-based producible.

Ectocarpus
siliculosus » Gapfilling
[Tapia2016] » MILP : 500 reactions (untractable)
» ASP: 50 reactions added to the network
Progosed afber manusi curstion » Sufficient for fluxes
- » Manual curation

- New bifunctional role of a specific enzym

P-DH omyumammgm

l Station Biologique

S .Y .. < G 2 ¥ de Roscoff
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Counter-example of application

) Y Station Biologique
¥ de Roscoff

Network analysis

» 1943 reactions

» 149 reactions added by ASP
» No way to produce biomass

Chondrus crispus

10z eideL

/
| =
] | —
19
|
o Y
I &
| & o
I % :l:
1 \
]
|

New problem to be solved Jj reaction
» Hybrid problem

» Constraint propagator
» Reduce the database

Hybgapfilling(S, Ry, G4, Gpg) =

arg min (size(reactants(RT) \ scope(G; U {R;.. Rm})>
{R;.Rm}<Gpp size{R;.. Ry}

st s.v=0,vp,>0,lb<v<ub Essential reactions for alanine production in CcrGem
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Role of environmental bacteria ?

Without
microbiome

Ectocarpus
[Dittami2014, Tapia2016, Prigent2015]

O CNRS * SORBONNE UNIVERSITE
"7 3 Station Biologique
wgW de Roscoff

Metabolism may be an explanation
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Systems ecology question

+ For each Genome
bacterium
% | Annotated genome |
+ % | Annotated genome | ECl’OCGI’pUS
Pathway Tools @' Inference of reactiol ‘
Pathway Tools @| Inference of react | &
Enz ym e?2 ?
Enzyme 2
nzyme nzyme
\ / 3 4

environment/

Can we suggest compound exchanges
that could restore the production of targeted compounds ?

» New gap-filling problem !
» Steiner graph approach or ASP implementation
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Scalability...

But... There are hundreds of bacteria in the environment

Hundreds

Marine biology of bacteria

Hundreds of Genome-scale
models (GSMs)

Happy few bacteria interact with the algae

How to select communities within large microbiotas which explain
the algal response to stress ?
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Selecting communities of interest within
[large] microbiotas

% ‘ PHENC‘)TYPE
® @

‘0 Y 4 - iH®)
|:|.:...:_: @

Host organism

The “who”, “how” challenges of community selection
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Selecting communities of interest within
[large] microbiotas

O
PHENOTYPE
' @ . © @ F)
O~ © 5
. RRRRRR on
WHO
key species Host organism

The “who”, “how” challenges of community selection
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Selecting communities of interest within
[large] microbiotas

@-
®-& -0
@ HOW PHENOTYPE
s interactions {
CNE o ®
O © ®
.Rmu
WHO -
key species Host organism

The “who”, “how” challenges of community selection
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Complexity
Communlty selection problem | L =l S
» Switch from hundreds of symbiots to 3 or 4 R\ s
o . & @7 /SO N
» Pinpoint a few number of putative cross- Rz v ( Y )
feedings & oW & ©
. N VAN g L
size(T \ MBscope (Gil.. GiL)
499,177 combinations of
Comsel(S,T,G;..G,) = arg min sizele c eXChg(Gil" GiL) | <6 exchanges

{exchg(Gi1--GiL)}C{G1--Gn} TN CPscope(Gil.. Gi, & S) =
T N MBscope(G;,..G;,,S)}

- n v

» depends on the number of hyperarcs

Size of the search space
» depends on the number of symbionts

1.62.108" combinations of
<10 exchanges

Highly combinatorial problem
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Two-step optimization procedure

-
LI — b
£y —_—

HOW? b o i
. W .
gt 1 T[T J
[ R P R N S
a Q -.’-.f:'f-fq L)
w1 A A
] A ot et s et
&t e 5

i

Heuristics for the community selection

problem
mxdbagCnity(S, T, G1..GN)
> Who problem d
. . - . size (T \mxdbagScope(G;, .G, , S)),
» Get rid of boundaries and select all " (616016160 e (6, .Gu.

minimal symbiot families

» How problem.
> Sort the selected families according to the °PtC““Y(S'T‘GIjG~) \
number of exchanges o T 5 )

size{G;,..G;, },
= argmin
. {Gi,..Gi} size{€ C exchg(G;,..G,,)|
» Manual curation. CiGG}|  TrepscopelBy. CutS)
» Ask your favorite biologist to select the \ =T mxdbagScope(G, .Gy, 5)).

final one
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Validation/benchmarking on human microbiome project

Context of the Study [Swainston et al., 2016] [Magnusdéttir et al., 2016]

+46 producible 381
metabolites minimal
communities
’ 89 bacteria
/]
Recon2.2 e
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Validation/benchmarking on human microbiome project |

4

Context of the Study [Swainston et al., 2016] [Magnusdéttir et al., 2016]

) +46 producible 381
—>»
Recon2.2

metabolites )n\ minimal
5&’ communities
Clustering of bacteria

_> 89 bacteria
) by ¢

. -
IT 1m0 3 -
u Bacilius orvus AHIET F4R10 72 L
Nt s WL 1 H [ : Bacllscoms GI842 x A — :
m_‘:‘.@m”bﬁ;’:—**“-‘ : mwm:mm :: mmﬂmm 5
A e T el ] o oo 1 n
Cluster 1: el Cluster 2: ) e Cluster 3: .
Bacteroidetes Firmicutes & Proteobacteria Firmicutes & Proteobacteria

:':":*"'""—"W; P L - cn-n-n-‘-::n&nrmc : s =
NS oo - Escherichia albertii TWITRZT “Q e el A AL -
[ras— it esrosg it o -4 Escherichis fergusenii ATCC 35469 " Burats B A peC oo i
Ca n ) Keyrers ascorbuta ATCC AMEY ] i bad
T : [ : Staphyoocens comit hu 01 ™ Vibrie farnindi NCTC 11218 L

el ATUC BAA 28 ] n

Each of the 381 communities is composed of
1 Bacteroidetes (/58) 4+ 1 Firmicute or Proteobacteria (/15) + 1 Firmicute or Proteobacteria (/16)
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Validation/benchmarking on human microbiome project /

PWRN-1-1-2_A

Association of bacteria & functionality e

Groups of equivalent bacteria
in clusters with respect to their
aSSOCIatIOHS [Bourneuf et al., 2017]

e Powernodes: groups of
bacteria, parts of bicliques

e Poweredges: connect bicliques
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Validation/benchmarking on human microbiome project

PWRN-1-1-2_A
P R1_A

aaaaa

Producible target
mm Non-producible target

;;;;;

Producibility of individual
targets explains the
communities — screening

Community composition can be explained by the functional dependencies
of the targets towards specific groups of bacteria
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Validation/benchmarking on human microbiome project

CNRS - SORRONNE UNIVERSITE
Station Biologique
de Roscoff

Joint work with Enora Fremy, Bertille

e (Ca. P. ectocarpi not culturable

e 10 culturable bacteria — functional redundancy Burgunter-Delamare & Simon Dittami
e 6 equivalent communities of 3 bacteria
&
e 3P o
Pg«\fa\\ \?i\%\\d\ %e\,(),a

:Imperialibacter

: Marinobacter

i Roseovariussp. 420 £
®

a

| Roseovarius sp. 134

1 Bosea

oeflea

) Metabolites ‘

Without - I
microbiome + 3 selected
bacteria among
30 cultivable ) .
i S. Dittami,
bacteria

Bertille Burgunter-Delamare

The algae grew again... But with strange behaviors
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Take home messages: life science data integration ?

> Life science data are multi-scale and heterogeneous
» Linked by underlying regulatory processes

» Systems biology ?
» study of complex systems which cannot be uniquely identified

» Handling complexity for
» Make (dynamical) hypotheses
» Solve optimization problems instead of identify parameters
» Win-win collaboration with your BBF ASP-tech developers

» We will never replace biologists

Molecular and cellular life science analysis is a user-assisted
data science rather than a modeling system science
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» Size complexity
» Towards deep-learning ?

» Heterogeneity complexity ?
» Knowledge-based methods
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Linked open data

= More than 1500 life science databases
« Gene Ontology
« Chebi
- KEGG
* Swissprot...

= Many of these DB are being linked and can be queried
 Huge knowledge repositories to support reasoning

(Cross Domain™ - - -

Government

Publications
Social Networking
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Linked Open Data initiative (2014) Linked Open Data initiative (2017)
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The futur of life-science data analysis ?

Machine learning : compound,
function and species identification

Knowledge representation :

gi_';?*‘-@a---@
o | s Connect data
8 — _—F—fewmeo_ 2 .
\ '“‘zw—o‘)‘/—% ¢ * Performant queries
Microbiota  \\~ | g— ®

e User-friendly interfaces

WHO
key species Host organism

Formal approaches : explain
* Automatic reasoning
* Assist biologists and never replace them ¢ !
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Prospective

» Our future role : facilitate and scale life science data analysis
» Easy exploration of search spaces
» Extract dynamical features as constraints (temporal ?)
» Use knowledge DBs

» Always explain the results
» Give choices to experimentalists

» According to all the hypotheses that we make, biologists have
to double-check our predictions.
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