

Reasoning over large-scale biological systems with heterogeneous and incomplete data

Anne SIEGEL, CNRS, Rennes

Dyliss team (Inria, Univ Rennes, CNRS)

Institut de Recherche en Informatique et Systèmes Aléatoires

Short presentation

Reasearch field

- ➤ Discrete dynamical systems & fractals
- > Systems biology
- Knowledge representation

IRISA & INRIA Rennes

- > 800 members, >40 teams
- Univ Rennes, CNRS, Inria, etc...

Bioinformatics@Rennes

- ➤ GenOuest: plateform, ressource center
- Genscale : NGS data analysis
- Dyliss: Integration of heterogeneous data

LIFE SCIENCE DATA

From life science... to data science

Naturalist approach

Observing and deducing

Experimental approach

Perturbating and observing

Modern biology

Measuring at lower scales

Data science!

Biomolecular data: genomes

Genome sequencing

- Very smart computational issues
- Bioinformatics

Thousands of publicly available genomes

Exploration, mapping and analysis

What do we do with genomic data?

Assign a function to each DNA fragment

Develop new technologies to validate/refine the assigned functions

Life science data nightmare

Data characteristics

- Large-scale
- Incomplete
- Inter-dependent
- Heterogeneous / multi-scale

How to integrate them?

SYSTEMS BIOLOGY

Systems biology

Setting all together

Gene function = regulation of a intra-cellular transformation procedure

- Biological interactions!
- Graphs / networks

What we get...

Large-scale graph description of interactions between compounds

Systems biology

Statement: biology is a complex system

« Requires to examine the structure and dynamics of a cellular function rather than the characteristics of isolated parts of a cell » (Kitano, 2002)

Systems biology: Interpreting multi-layer data and graphs

Produce predictive statements that can be experimentally validated

Case-study: extremophile mining consortium

Role of an **empirical taylor-made consortium** of bacteria in copper extraction from ore ?

- Turn data into
- genomics maps
- interaction maps

Understand the contribution of each bacteria to the complete system?

integrative and systems biology

Metabolic compounds

A second case-study: algal metabolism

E. siliculosus

In axenic condition....

Ectocarpus
[Dittami2014, Tapia2016]

What is the role of environmental bacteria?

Complex systems are everywhere

Are molecular/cellular different than others?

Dynamical systems

Historical motivation

Model the evolution of the set of components in a system according to

time.

$$F: (t, \mathbf{z}) \rightarrow \mathbb{S}$$
 $f: (t, \mathbf{z}) \mapsto F(t, \mathbf{z})$
 $f: (time, state) \quad \text{new state at time } t$

$$\frac{dX}{dt} = \frac{k}{K + Y^n} - aX$$

$$\frac{dY}{dt} = \frac{l}{L + X^n} - bY$$

$$f(X) \leftarrow 1 - Y$$

$$f(Y) \leftarrow 1 - X$$
Boolean model with asynchronous update scheme

Identification of a dynamical system

Find the **best function** F which parcimounously explains and describes the observed responses of a system.

Model identification since the 18th century

What has always allowed a model identification

- > A priori knowledge about the laws governing the system
 - Predetermined shape for the function F
- > Limited number of components
 - Reduction of the search space

- Wide panel of sensors and perturbations
 - > Discriminate parameters

Where is the complexity?

➤ The search space grows exponentially with the number of measured compounds

The more compounds we measure, the less identifiable a system is.

Differences between application domains

Today's molecular/cellular biological systems

Omics data.

- ➤ Large-scale
- Noisy
- > Heterogeneous.

Biological systems characteristics

- ➤ Large-scale
- Empirical laws
- Few data wrt the search space size

Biological systems observed with omics data are not uniquely identifiable

6

Strategy: combine dynamical systems and constraints programming

Describe a system by a family of abstract models

Reason over a family of models instead of selecting a single one

(Logical) knowledge representation

- Search space description
- Structured knowledge (link open data)

Discrete dynamical systems

- > Links between multi-scale observations.
- > Invariants of model families.

Solving optimisation problems

- Replace laws by constraints
- > Extract robust information

KNOWLEDGE REPRESENTATION

```
1{murderer(ms_Scarlet); murderer(colonel_Mustard)}1.
1{weapon_of_crime(revolver); weapon_of_crime(candlestick)}1.
1{place_of_crime(kitchen); place_of_crime(hall);
                                place of crime(dining room) \{1.
crim record(ms Scarlet, 7). crim record(colonel Mustard, 4).
weapon_of_crime(candlestick).
:- place_of_crime(kitchen).
place_of_crime(hall) : - murderer(colonel_Mustard), not
                                        weapon_of_cri me(revol ver).
sol(X, Y, Z) : - murderer(X), weapon_of_crime(Y), place_of_crime(Z).
\#maximize\{W , sol : sol(X, Y, Z) , crim_record(X, W) , murdered(W)<math>\}.
#show sol /3.
```


ite (boolean, linear)

Solving combinatorial problems

Problem Solutions Interpretation Specify Set of formulas Models (boolean, LP) **Solving**

Write a program which how the problem sho

Problem Solutions nstraints (SAT, ILP,...) Interpretation Modeling Problem Set of Models representation boolean formulas (answer sets) (logicl language) Grounding **Solver** Declarative programing

Answer set programming. Describe what you want to solve

- Problem = axioms & rules
- No need of algorithm

ASP logical rules: declarative programming

```
K \{ atom_1; \ldots; atom_n \} L \subseteq atom_{n+1}; \ldots; atom_r; not atom_{r+1}; \ldots; not atom_s \}
                            "smilev"
                                                          body
           head
            If
                     all terms on the right side are true,
            then
                     at least K and at most L terms are true
                     on the left side.
                                                      nothing on the right side,
                                             lf
         nothing on the left side,
                                                       always true.
         always false.
then
                                             then
     :- K{atom1, .. atomN}L.
                                                    K\{atom1, ... atomN\}L.
             Optimisation rule
             #maxi mi ze{W, atom(X): condi ti on(X), W}.
```

High-level model language

- Propositional logics
- Model for negation

Highly performant solving technics

- > SAT-based and deductive-DB technics
- Decidable: no infinite loop

Link with systems biology?

Integrative and systems biology is a very relevant field to challenge ASP technologies

- Repair large-scale interaction graph with branch and bound solving heuristics (KR 2010)
- Scale metabolic network completion problem with unsatisfiable core solving strategy (LPNMR 2013)
- Design experiments with incremental solving (Frontiers 2015)
- ➤ Implement and benchmark **constrains propagators** (TPLP 2018)

Problem statement & modelling

Solving heuristics & problem reformulation

Linear constrains atoms

 $sum{a1*x1; ...; al *xl} <= k$

Application: extremophile mining consortium

Role of an empirical taylor-made consortium of bacteria in

« NAD(H) biosynthesis metabolic pathways of A. Cryptum complements metabolic functions spread between the five strains »

ASP program

- → graph alignment / static modeling
- → chains of reactions explaining the capability of the consortium to produce the compounds (LPNRM'13, Microbiology open'15)

BACK TO DYNAMICAL SYSTEMS

Biological systems characteristics

- ➤ Large-scale
- Empirical laws
- Few data wrt the search space size

Biological systems observed with omics data are not uniquely identifiable

Underlying tool: from genes to dynamical systems

Link between genes and functions

1 genome

- ⇒ 1 metabolic network
- = bipartite directed graph

Large scale metabolic network

All expected metabolic capabilities of an organism

How to model fluxes?

v([substrat]) = Vm[Substrat] / (Km + [Substrat])

Back to high school chemistry

> Two parameters have to be estimated for each reaction

Intractable in practice!

Overapproximation of the dynamics

Quasi-steady state hypothesis

Metabolic compounds do not accumulate

- Fluxes have constant values
- > Fluxes are constrained by linear values
- > The system optimises a global objective

$$r$$
 is active if $v_r > 0$ and $s.v = 0$ and $lb < v < ub$

Replace kinetic constants by global optimisation hypotheses

Growing phase hypothesis

Functionality: recursive graph-based semantics

scope(M): - seed(M).scope(M): - product(M, R), reaction(R), scope(M): reactant(M, R).

Study paths in hypergraphs

Everything is a matter of choices

The reaction status of the reactions is different according to the approximation

- No choice but dealing with such overapproximation!
- Use the flexibility of ASP language to handle these questions

APPLICATION TO NETWORK COMPLETION

Data incompleteness

Metabolic networks built from NGS sequencing

> no possible biomass production.

Gapfilling a metabolic network (nutshell)

Gapfilling a metabolic network

What we have

- ➤ Graph with non-accessible target components
- > Knowledge database of possible edges

Experimentally observed compounds

Putative interactions from knowledge databases

Gap-filling problem:

- > Restore target accessibility
- ➤ Minimal number of reactions

$$\begin{aligned} \text{gapfilling}(S, R_T, G_1, G_{DB}) &= \\ \underset{\{R_i..R_m\} \subset G_{DB}}{\text{arg min}} \left(\begin{aligned} size(reactants(R_T) \setminus scope(G_1 \cup \{R_i..R_m\})) \\ size\{R_i..R_m\} \end{aligned} \right) \end{aligned}$$

Meneco: ASP-based gap-filling for non-model organisms

```
 \begin{aligned} & \text{Hybgapfilling}(S, R_T, G_1, G_{DB}) \\ & \underset{\{R_i..R_m\} \subset G_{DB}}{\text{arg min}} \left( \begin{aligned} size(reactants(R_T) \setminus scope(G_1 \cup \{R_i..R_m\}) \\ size\{R_i..R_m\} \end{aligned} \right) \end{aligned}
```

```
{reaction(r)}.
scope(M): - seed(M).
scope(M): - product(M,R), reaction(R), scope(M): reactant(M,R).
: - target(T), not scope(T).
#mi ni mi ze{ reaction(r) }.
```

16 reactions in average are sufficient to restore degraded bacterial networks (PLOS CB 2017)

MILP-based approaches required from 200 to 4000 reactions.

Benchmark of 10,800 bacterial networks

Example of application

Ectocarpus siliculosus

[Tapia2016]

Proposed after manual curation

> 54 metabolites to produce:

- > 25 are graph-based producible
- None is FBA-based producible.

Gapfilling

- MILP: 500 reactions (untractable)
- > ASP: 50 reactions added to the network
 - Sufficient for fluxes
 - Manual curation

New bifunctional role of a specific enzym

(Plant Journal 2015)

Counter-example of application

Chondrus crispus

Network analysis (G. Markov, SBR)

- 1943 reactions
- 149 reactions added by ASP
- No way to produce biomass

New problem to be solved

- Hybrid problem (TPLP 2018)
- Constraint propagator
- Reduce the database

$$\begin{aligned} & \text{Hybgapfilling}(S, R_T, G_1, G_{DB}) = \\ & \underset{\{R_i..R_m\} \subset G_{DB}}{\text{arg min}} \left(\frac{size(reactants(R_T) \setminus scope(G_1 \cup \{R_i..R_m\}))}{size\{R_i..R_m\}} \right) \end{aligned}$$

s.t
$$s. v = 0, v_{R_T} > 0, lb < v < ub$$

STILL MORE COMPLEXITY

Role of environmental bacteria?

Metabolism may be an explanation

(PLOS CB 2017)

Systems ecology question

Can we suggest compound exchanges that could restore the production of targeted compounds?

- ➤ New gap-filling problem!
- > Steiner graph approach (Sagot team, 2017) or ASP implementation

Scalability...

But... There are hundreds of bacteria in the environment

How to select communities within large microbiotas which explain the algal response to stress?

Selecting communities of interest within [large] microbiotas

The "who", "how" challenges of community selection

Selecting communities of interest within [large] microbiotas

The "who", "how" challenges of community selection

Selecting communities of interest within [large] microbiotas

The "who", "how" challenges of community selection

Complexity

Community selection problem

- Switch from hundreds of symbiots to 3 or 4
- Pinpoint a few number of putative crossfeedings

$$\mathsf{Comsel}(\mathsf{S},\mathsf{T},\mathsf{G}_1..\,\mathsf{G}_n) = \underset{\left\{exchg(G_{i_1}..G_{i_L})\right\} \subset \left\{G_1..G_n\right\}}{\mathsf{arg\;min}} \left(\begin{array}{c} size(T \setminus MBscope(G_{i_1}..\,G_{i_L})) \\ size\{\varepsilon \subset exchg(G_{i_1}..\,G_{i_L}) \mid \\ T \cap CPscope(G_{i_1}..\,G_{i_L},\varepsilon,S) = \\ T \cap MBscope(G_{i_1}..\,G_{i_L},S) \right\} \end{array} \right)$$

depends on the number of hyperarcs

Size of the search space

depends on the number of symbionts

499,177 combinations of <6 exchanges

1.62.10⁸¹ combinations of <10 exchanges

Highly combinatorial problem

Two-step optimization procedure

Heuristics for the community selection problem

- Who problem.
 - Get rid of boundaries and select all minimal symbiot families

$$\begin{aligned} & \mathsf{mxdbagCnity}(S, T, G_1..G_N) \\ &= \underset{\{G_{i_1}..G_{i_L}\} \subset \{G_1..G_N\}}{\mathsf{arg\,min}} \left(\underset{\mathsf{size}}{\mathsf{size}} \left(T \backslash \mathsf{mxdbagScope}(G_{i_1}..G_{i_L}, S) \right), \\ & \mathsf{size} \left\{ G_{i_1}..G_{i_L} \right\}. \end{aligned} \right) \end{aligned}$$

- > How problem.
 - Sort the selected families according to the number of exchanges
- Manual curation.
 - Ask your favorite biologist to select the final one

$$\mathsf{cptCnity}(S, T, G_1...G_N)$$

$$= \underset{\{G_{i_1}...G_{i_L}\}}{\mathsf{arg\,min}} \left\{ \begin{aligned} & \mathsf{size}\Big(T \backslash \mathsf{mxdbagScope}(G_{i_1}...G_{i_L}, S)\Big), \\ & \mathsf{size}\{G_{i_1}..G_{i_L}\}, \\ & \mathsf{size}\{\mathcal{E} \subset \mathsf{exchg}(G_{i_1}..G_{i_L})| \\ & T \cap \mathsf{cptScope}(G_{i_1}..G_{i_L}, \mathcal{E}, S) \\ & = T \cap \mathsf{mxdbagScope}(G_{i_1}..G_{i_L}, S)\}. \end{aligned} \right\}$$

Context of the study [Swainston et al., 2016] [Magnúsdóttir et al., 2016]

Context of the study [Swainston et al., 2016] [Magnúsdóttir et al., 2016]

Clustering of bacteria

Each of the 381 communities is composed of 1 Bacteroidetes (/58) + 1 Firmicute or Proteobacteria (/15) + 1 Firmicute or Proteobacteria (/16)

Association of bacteria & functionality

Groups of equivalent bacteria in clusters with respect to their associations [Bourneuf et al., 2017]

• Powernodes: groups of bacteria, parts of bicliques

• Poweredges: connect bicliques

- Ca. P. ectocarpi not culturable
- ullet 10 culturable bacteria o functional redundancy
- 6 equivalent communities of 3 bacteria

Joint work with Enora Fremy, Bertille Burgunter-Delamare & Simon Dittami

S. Dittami,
Bertille Burgunter-Delamare

The algae grew again... But with strange behaviors

TOWARDS CONCLUSION

Take home messages: life science data integration?

- Life science data are multi-scale and heterogeneous
 - > Linked by underlying regulatory processes
- Systems biology?
 - study of complex systems which cannot be uniquely identified
- Handling complexity for
 - Make (dynamical) hypotheses
 - > Solve optimization problems instead of identify parameters
 - Win-win collaboration with your BBF ASP-tech developers
- We will never replace biologists

Molecular and cellular life science analysis is a user-assisted data science rather than a modeling system science

What about the future

- Size complexity
 - > Towards deep-learning?
- Heterogeneity complexity?
 - Knowledge-based methods

Linked open data

- More than 1500 life science databases
 - Gene Ontology
 - Chebi
 - KEGG
 - Swissprot...
- Many of these DB are being linked and can be queried
 - Huge knowledge repositories to support reasoning

Linked Open Data initiative (2014)

Linked Open Data initiative (2017)

The futur of life-science data analysis?

Machine learning: compound, function and species identification

Formal approaches: explain

- Automatic reasoning
- Assist biologists and never replace them

Knowledge representation:

Connect data

- Performant queries
- User-friendly interfaces

Prospective

- Our future role : facilitate and scale life science data analysis
 - Easy exploration of search spaces
 - > Extract dynamical features as constraints (temporal?)
 - Use knowledge DBs
- Always explain the results
 - > Give choices to experimentalists
 - > According to all the hypotheses that we make, biologists have to double-check our predictions.

Acknowledgment

Equipe Dyliss@IRISA

- Métabolisme@IRISA
 - C. Frioux
 - S. Prigent (INRA)
 - M. Aite
 - M. Chevallier
 - J. Got
- Algues@SBR Roscoff
 - S. Dittami
 - H. Kliijean
 - B. Burgunter
 - T. Tonon
- ASP tech@Potsdam university
 - T. Schaub's team
 - S. Thiele

- CMM@Univ Chile
 - A. Maass
 - M. P. Cortes
 - P. Bourdon
- Modélisation métabolisme@Nantes
 - D. Eveillard (LS2N)