Fourier, Wavelets and Beyond: The Search for Good Bases for Images

Martin Vetterli EPFL & UC Berkeley

Colloque Jacques Morgenstern 7.06.07 INRIA Sophia-Antipolis

Audiovisual Communications Laboratory

Acknowledgements

Collaborations:

- T.Blu, EPFL
- M.Do, UIUC
- P.L.Dragotti, Imperial College
- P.Marziliano, NTU Singapore
- C.Weidmann, TRC Vienna

Discussions and Interactions:

- A.Cohen, Paris VI
- I. Daubechies, Princeton
- R.DeVore, Carolina
- D. Donoho, Stanford
- M.Gastpar, Berkeley
- V.Goyal, MIT
- J. Kovacevic, CMU
- S. Mallat, Polytech. & NYU
- M.Unser, EPFL

Sponsors: NSF Switzerland

Outline

- 1. Introduction through History
- 2. Fourier and Wavelet Representations
- 3. Wavelets and Approximation Theory
- 4. Wavelets and Compression
- 5. Going to Two Dimensions: Non-Separale Constructions
- 6. Beyond Shift Invariant Subspaces
- 7. Conclusions and Outlook

Outline

1. Introduction through History

- From Rainbows to Spectras
- Signal Representations
- Approximations
- Compression
- 2. Fourier and Wavelet Representations
- 3. Wavelets and Approximation Theory
- 4. Wavelets and Compression
- 5. Going to Two Dimensions: Non-Separable Constructions
- 6. Beyond Shift Invariant Subspaces
- 7. Conclusions and Outlook

From Rainbows to Spectras

Von Freiberg, 1304: Primary and secondary rainbow Newton and Goethe

Signal Representations (1/2)

1807: Fourier upsets the French Academy....

Fourier Series: Harmonic series, frequency changes, f_0 , $2f_0$, $3f_0$, ...But... 1898: Gibbs' paper1899: Gibbs' correction

Orthogonality, convergence, complexity

and which see

Signal Representations (2/2)

1910: Alfred Haar discovers the Haar wavelet "dual" to the Fourier construction

Haar series:

- Scale changes S_0 , $2S_0$, $4S_0$, $8S_0$...
- orthogonality

Theorem 1 (Shannon-48, Whittaker-35, Nyquist-28, Gabor-46)

If a function f(t) contains no frequencies higher than W cps, it is completely determined by giving its ordinates at a series of points spaced 1/(2W) seconds apart.

[if approx. T long, W wide, 2TW numbers specify the function]

It is a representation theorem:

- $\{sinc(t-n)\}_{n \ in \ Z}$, is an orthogonal basis for $\mathsf{BL}[-\pi,\pi]$
- f(t) in BL[$-\pi, \pi$] can be written as $f(t) = \sum_{n} f(n) \cdot sinc(t-n)$

Note:

- Shannon-BW, BL sufficient, not necessary.
- many variations, non-uniform etc
- Kotelnikov-33!

Representations, Bases and Frames

Ingredients:

- as set of vectors, or "atoms", $\{ \varphi_n \}$
- an inner product, e.g. $\langle \varphi_n, f \rangle = \int (\varphi_n \cdot f)$
- a series expansion

$$f(t) = \sum_{n} \langle \varphi_n, f \rangle \cdot \varphi_n(t)$$

Many possibilities:

- orthonormal bases (e.g. Fourier series, wavelet series)
- biorthogonal bases
- overcomplete systems or frames

Note: no transforms, uncountable

The linear approximation method

Given an orthonormal basis $\{g_n\}$ for a space S and a signal

$$f = \sum_{n} \langle f, g_n \rangle \cdot g_n$$

the best linear approximation is given by the projection onto a fixed sub-space of size M (independent of f!)

$$\widehat{f}_M = \sum_{n \in J_M} \langle f, g_n \rangle \cdot g_n$$

The error (MSE) is thus

$$\varepsilon_M = || f - \hat{f} ||^2 = \sum_{n \notin J_M} |\langle f, g_n \rangle|^2$$

Ex: Truncated Fourier series project onto first M vectors corresponding to largest expected inner products, typically LP

The Karhunen-Loeve Transform: The Linear View

Best Linear Approximation in an MSE sense:

Vector processes., i.i.d.:

$$X = [X_0, X_1, \dots, X_{N-1}]^T$$
 $E[X_i] = 0$ $E[X \cdot X^T] = R_X$

Consider linear approximation in a basis

$$\hat{X}_M = \sum_{n=0}^{M-1} \langle X, g_n \rangle \cdot g_n \qquad M < N$$

Then:

$$E[\varepsilon_M] = \sum_{n=M}^{N-1} \langle R_X g_n, g_n \rangle$$

Karhunen-Loeve transform (KLT):

For 0<M<N, the expected squared error is minimized for the basis $\{g_n\}$ where g_m are the eigenvectors of R_x ordered in order of decreasing eigenvalues.

Proof: eigenvector argument inductively. **Note:** Karhunen-47, Loeve-48, Hotelling-33, PCA, KramerM-56, TC

Compression: How many bits for Mona Lisa?

$\iff \{0,1\}$

A few numbers...

D. Gabor, September 1959 (Editorial IRE)

"... the 20 bits per second which, the psychologists assure us, the human eye is capable of taking in, ..."

Index all pictures ever taken in the history of mankind

• 100 $years \cdot 10^{10} \sim 44$ bits

Huffman code Mona Lisa index

• A few bits (Lena Y/N?, Mona Lisa...), what about R(D)....

Search the Web!

• http://www.google.com, 5-50 billion images online, or 33-36 bits

JPEG

- 186K... There is plenty of room at the bottom!
- JPEG2000 takes a few less, thanks to wavelets...

Note: 2^(256x256x8) possible images (D.Field)

Homework in Cover-Thomas, Kolmogorov, MDL, Occam etc

Source Coding: some background

Exchanging description complexity for distortion:

- rate-distortion theory [Shannon:58, Berger:71]
- known in few cases...like i.i.d. Gaussians (but tight: no better way!)

- typically: difficult, simple models, high complexity (e.g. VQ)
- high rate results, low rate often unknown

New image coding standard ... JPEG 2000

Original Lena Image (256 x 256 Pixels, 24-Bit RGB)

JPEG Compressed (Compression Ratio 43:1)

JPEG2000 Compressed (Compression Ratio 43:1)

From the comparison,

- JPEG fails above 40:1 compression
- JPEG2000 survives

Note: images courtesy of www.dspworx.com

Representation, Approximation and Compression: Why does it matter anyway?

Parsimonious or sparse representation of information is key in

- storage and transmission
- indexing, searching, classification, watermarking
- denoising, enhancing, resolution change

But: it is also a fundamental question in

- information theory
- signal/image processing
- approximation theory
- vision research

Successes of wavelets in image processing:

- compression (JPEG2000)
- denoising
- enhancement
- classification

Thesis: Wavelet models play an important role

Antithesis: Wavelets are just another fad!

Outline

- 1. Introduction through History
- 2. Fourier and Wavelet Representations
 - Fourier and Local Fourier Transforms
 - Wavelet Transforms
 - Piecewise Smooth Signal Representations
- 3. Wavelets and Approximation Theory
- 4. Wavelets and Compression
- 5. Going to Two Dimensions: Non-Separable Constructions
- 6. Beyond Shift Invariant Subspaces
- 7. Conclusions and Outlook

Fourier and Wavelet Representations: Spaces

Norms:

$$||x||_{p} = \left(\sum_{n} |x[n]|^{p}\right)^{\frac{1}{p}} \qquad ||f||_{p} = \left(\int_{-\infty}^{\infty} |f(t)|^{p} dt\right)^{\frac{1}{p}}$$

Hilbert spaces:

$$l_2(Z) = \{x : (\|x\|_2 < \infty)\} \qquad L_2(R) = \{f : (\|f\|_2 < \infty)\}$$

Inner product:

$$\langle x, y \rangle = \sum_{n} x^*[n]y[n]$$

$$\langle f,g\rangle = \int f^*(t)g(t)dt$$

Orthogonality:

 $x \bot y \Leftrightarrow \langle x, y \rangle = \mathbf{0}$

Banach spaces:

x, f s.t. $||x||_p, ||f||_p < \infty$ p general p = 1 and $p = \infty$ of particular interest

C^P spaces: p-times diff. with bounded derivatives -> Taylor expansions Holder/Lipschitz α : locally α smooth (non-integer)

Example

consider $x \in \mathbb{R}^2$ and $||x||_p = 1$

p < 1: quasi norm, p -> 0: sparsity measure

to the state and stronger

A Tale of Two Representations: Fourier versus Wavelets

Orthonormal Series Expansion

$$f = \sum_{n \in \mathbb{Z}} \alpha_n \varphi_n \qquad \alpha_n = \langle \varphi_n, f \rangle \qquad \langle \varphi_n, \varphi_m \rangle = \delta_{n-m} \qquad \|f\|_2 = \|\alpha\|_2$$

Time-Frequency Analysis and Uncertainty Principle

$$f(t) \leftrightarrow F(\omega)$$
 $\Delta_t^2 = \int t^2 |f(t)| dt$ $\Delta_\omega^2 = \int \omega^2 |F(\omega)| d\omega$

Then

$$\Delta_t^2 \cdot \Delta_\omega^2 \ge rac{\pi}{2}$$

Not arbitrarily sharp in time and frequency!

Local Fourier Basis?

When T, ω_0 "small enough"

 $f(t) \approx c \cdot F_{m,n} \varphi_{m,n}(t)$ where $F_{m,n} = \langle \varphi_{m,n}, f \rangle$

Example: Spectrogram

The Bad News...

Balian-Low Theorem

 $\varphi_{m,n}$ is a short-time Fourier frame with critical sampling $(T\omega_0 = 2\pi)$ then either

$$\Delta_t^2 = \infty$$
 or $\Delta_\omega^2 = \infty$

or: there is no good local orthogonal Fourier basis!

Example of a basis: block based Fourier series

Note: consequence of BL Theorem on OFDM, RIAA

The Good News!

There exist good local cosine bases.

Replace complex modulation $(e^{jm\omega_0 t})$ by appropriate cosine modulation

$$\varphi_{m,n}(t) = w(t-nT)\cos\left(\frac{\pi}{2}\left(m+\frac{1}{2}\right)\left(t-nT+\frac{T}{2}\right)\right)$$

where w(t) is a power complementary window

Result: MP3!

Many generalisations...

Example of time-frequency tiling, state of the art audio coder

In this example, it switches from 1024 channels down to 128, makes for pretty crisp attacks!

It also makes the RIAA nervous....

Another Good News!

Replace (shift, modulation)

by (shift, scale)

or

$$\psi_{m,n}(t) = 2^{-\frac{m}{2}} \psi\left(\frac{t-2^m n}{2^m}\right) \quad n, m \in \mathbb{Z}$$

then there exist "good" localized orthonormal bases, or wavelet bases

Examples of bases

Haar

+ drifter man

Daubechies, D₂

Wavelets and representation of piecewise smooth functions

Goal: efficient representation of signals like

where:

- Wavelet act as singularity detectors
- Scaling functions catch smooth parts
- "Noise" is circularly symmetric

Note: Fourier gets all Gibbs-ed up!

Key characteristics of wavelets and scaling functions (1/3)

Daubechies-88, Wavelets from filter banks, ortho-LP with N zeros at $~\pi$,

$$G(z) = (1+z^{-1})^N \cdot R(z)$$

Scaling function:

$$\varphi(\omega) = \prod_{i=1}^{\infty} G\left(e^{j\left(\frac{\omega}{2^i}\right)}\right)$$

Orthonormal wavelet family: $\psi_{m,n}(t) = 2^{-\frac{m}{2}}\psi(2^{-m}t-n)$

Scaling function and approximations

• Scaling function $\varphi(t)$ spans polynomials up to degree N-1

$$\sum_{n} c_n \cdot \varphi(t-n) = t^k \quad k = 0, 1, \dots, N-1$$

• Strang-Fix theorem: if $\varphi(\omega)$ has N zeros at multiples of 2π (but the origin), then $\{\varphi(t-n)\}_{n\in \mathbb{Z}}$ spans polynomials up to degree N-1

• Two scale equation:
$$\varphi(t) = \frac{1}{\sqrt{2}} \cdot \sum_{n} g_n \cdot \varphi(2t - n)$$

• Smoothness: follows from N, $\alpha = 0,203$ N

Key characteristics of wavelets and scaling functions (2/3)

Lowpass filters and scaling functions reproduce polynomials

• Iterate of Daubechies L=4 lowpass filter reproduces linear ramp

Scaling functions catch "trends" in signals

Key characteristics of wavelets and scaling functions (3/3)

Wavelet approximations

- wavelet ψ has N zeros moments, kills polynomials up to degree N-1
- wavelet of length L=2N-1, or 2N-1 coeffs influenced by singularity at each scale, wavelet are singularity detectors,
- wavelet coefficients of smooth functions decays fast, e.g. f in c^P, m << 0

$$\langle \psi_{m,n}, f \rangle = c 2^{m(p-\frac{1}{2})}$$

Note: all this is in 1 dimension only, 2D is another story...

How about singularities?

If we have a singularity of order n at the origin (0: Dirac, 1: Heaviside,...), the CWT transform behaves as

$$X(a,0) = c_n \cdot a^{\left(n - \frac{1}{2}\right)}$$

In the orthogonal wavelet series: same behavior, but only L=2N-1 coefficients influenced at each scale!

- E.g. Dirac/Heaviside: behavior as $2^{-\frac{m}{2}}$ and $2^{\frac{m}{2}}$, m << 0

Wavelets catch and characterize singularities!

Thus: a piecewise smooth signal expands as:

- phase changes randomize signs, but not decay
- a singularity influence only L wavelets at each scale
- wavelet coefficients decay fast

Outline

- 1. Introduction through History
- 2. Fourier and Wavelet Representations
- 3. Wavelets and Approximation Theory
 - Non-linear approximation
 - Fourier versus wavelet, LA versus NLA
- 4. Wavelets and Compression
- 5. Going to Two Dimensions: Non-Separable Constructions
- 6. Beyond Shift Invariant Subspaces
- 7. Conclusions and Outlook

From linear to non-linear approximation theory

The non-linear approximation method

Given an orthonormal basis $\{g_n\}$ for a space S and a signal

$$f = \sum_{n} \langle f, g_n \rangle \cdot g_n$$

the best nonlinear approximation is given by the projection onto an adapted subspace of size M (dependent on f!)

$$\tilde{f}_M = \sum_{n \in I_M} \langle f, g_n \rangle \cdot g_n$$

 $I_M: \quad |\langle f,g_n\rangle|_{n\in I_M} \geq |\langle f,g_m\rangle|_{m\notin I_M} \quad \text{ set of M largest} \langle \ ,\rangle$

The error (MSE) is thus $\tilde{\varepsilon}_M = ||f - \tilde{f}||^2 = \sum_{n \notin I_M} |\langle f, g_n \rangle|^2$

and $\tilde{\varepsilon}_M \leq \varepsilon_M$

Difference: take the first M coeffs (linear) or

take the largest M coeffs (non-linear)

From linear to non-linear approximation theory

Nonlinear approximation

- This is a simple but nonlinear scheme
- Clearly, if $A_M(.)$ is the NL approximation scheme:

 $A_M(x) + A_M(y) \neq A_M(x+y)$

This could be called "adaptive subspace fitting"

From a compression point of view, you "pay" for the adaptivity

• in general, this will cost

$$\log\left(\begin{bmatrix} N \\ k \end{bmatrix}
ight)$$
 bits

These cannot be spent on coefficient representation anymore

LA: pick a subspace a priori NLA: pick after seeing the data

Non-Linear Approximation Example

Nonlinear approximation power depends on basis

Non-linear Approximation Example

Fourier basis: N=1024, M=64, linear versus nonlinear

• Nonlinear approximation is not necessarily much better!

Non-linear Approximation Example

Wavelet basis: N=1024, M=64, J=6, linear versus nonlinear

• Nonlinear approximation is vastly superior!

Nonlinear approximation theory and wavelets

Approximation results for piecewise smooth fcts

- between discontinuities, behavior by Sobolev or Besov regularity
- k derivatives \Rightarrow coeffs $\sim 2^{m(k-\frac{1}{2})}$ when $m \ll 0$
- Besov spaces can be defined with wavelets bases. If

$$\|f\|_{G,p} = \left(\sum |\langle f, g_n \rangle|^p\right)^{\frac{1}{p}} < \infty \qquad 0 < p < 2$$

then [DeVoreJL92]:

$$\tilde{\varepsilon}_M = o(M^{1-\frac{2}{p}})$$

Smooth versus piecewise smooth functions:

It depends on the basis and on the approximation method

s=2, N=2^16, D_3, 6 levels

Fall 2006 - 40

Outline

- 1. Introduction through History
- 2. Fourier and Wavelet Representations
- 3. Wavelets and Approximation Theory
- 4. Wavelets and Compression
 - A small but instructive example
 - Piecewise polynomials and D(R)
 - Piecewise smooth and D(R)
 - Improved wavelet schemes
- 5. Going to Two Dimensions: Non-Separable Constructions
- 6. Beyond Shift Invariant Subspaces
- 7. Conclusions and Outlook

Wavelets and Compression

Compression is just one bit trickier than approximation...

A small but instructive example:

Assume

- $x[n] = \alpha \delta[n-k]$, signal is of length N, k is U[0, N-1] and α is N(0, 1)
- This is a Gaussian RV at location k

Given budget R for block of size N:

1. Linear approximation and KLT: equal distribution of R/N bits $D(R) = c \cdot \sigma^2 \cdot 2^{-2(R/N)}$

This is the optimal linear approximation and compression!

2. Rate-distortion analysis [Weidmann:99]

High rate cases:

- Obvious scheme: pointer + quantizer $D(R) = c \cdot \sigma^2 \cdot 2^{-2(R - logN)}$
- This is the R(D) behavior for R >> Log N
- Much better than linear approximation

Low rate case:

- Hamming case solved, inc. multiple spikes:
 there is a linear decay at low rates
- L2 case: upper bounds that beat linear approx.

Piecewise smooth functions: pieces are Lipschitz-α

The following D(R) behavior is reachable [CohenDGO:02]:

$$D(R) = c_1 \cdot R^{-2\alpha} + c_3 \cdot \sqrt{R} \cdot 2^{-c_4 \cdot \sqrt{R}}$$

There are 2 modes:

- $R^{-2\alpha}$ corresponding to the Lipschitz- α pieces
- $\sqrt{R} \cdot 2^{-c \cdot \sqrt{R}}$ corresponding to the discontinuities

Fall 2006 - 44

Piecewise polynomial, with max degree N

A. Nonlinear approximation with wavelets having N+1 zero moments

$$D_w(R) = C'_w \cdot (1 + \alpha \sqrt{C_W R}) \cdot 2^{-\sqrt{C_W R}}$$

B. Oracle-based method

$$D_p(R) = C'_p \cdot 2^{-(C_p \cdot R)}$$

Thus

- wavelets are a generic but suboptimal scheme
- oracle method asymptotically superior but dependent on the model

Conclusion on compression of piecewise smooth functions: D(R) behavior has two modes:

$$D(R) = c_1 \cdot R^{-2\alpha} + c_3 \cdot \sqrt{R} \cdot 2^{-c_4 \cdot \sqrt{R}}$$

- 1/polynomial decay: cannot be (substantially) improved
- exponential mode: can be improved, important at low rates

Can we improve wavelet compression?

Key: Remove depencies across scales:

- dynamic programming: Viterbi-like algorithm
- tree based algorithms: pruning and joining
- wavelet footprints: wavelet vector quantization

Theorem [DragottiV:03]:

Consider a piecewise smooth signal f(t), where pieces are Lipschitz- α . There exists a piecewise polynomial p(t) with pieces of maximum degree $\lfloor \alpha \rfloor$ such that the residual $r_{\alpha}(t) = f(t) - p(t)$ is uniformly Lipschitz- α .

This is a generic split into piecewise polynomial and smooth residual

Footprint Basis and Frames

Suboptimality of wavelets for piecewise polynomials is due to independent coding of dependent wavelet coefficients

 $D_W(R) \sim C \cdot \sqrt{R} \cdot 2^{-\sqrt{R}}$

Compression with wavelet footprints

Theorem: [DragottiV:03]

Given a bounded piecewise polynomial of deg D with K discontinuities. Then, a footprint based coder achieves

$$D(R) = c_1 \cdot 2^{-(c_2 \cdot R)}$$

This is a computational effective method to get oracle performance What is more, the generic split "piecewise smooth" into "uniformly smooth + piecewise polynomial" allows to fix wavelet scenarios, to obtain

$$D(R) = c_1 \cdot R^{-2\alpha} + c_2 \cdot 2^{-c_3 \cdot R}$$

This can be used for denoising and superresolution

Denoising (use coherence across scale)

Denoising with Footprints (SNR=27.2dB)

a dought me may

Cycle-Spinning (SNR=25.4dB)

This is a vector thresholding method adapted to wavelet singularities

Outline

- 1. Introduction through History
- 2. Fourier and Wavelet Representations
- 3. Wavelets and Approximation Theory
- 4. Wavelets and Compression
- 5. Going to Two Dimensions: Non-Separable Constructions
 - The need for truly two-dimensional constructions
 - Tree based methods
 - Non-separable bases and frames
- 6. Beyond Shift Invariant Subspaces
- 7. Conclusions and Outlook

Going to Two Dimensions: Non-Separable Constructions

Going to two dimensions requires non-separable bases Objects in two dimensions we are interested in

• smooth surfaces: $D(R) = C_0 \cdot 2^{-2R}$ per object!

Models of the world:

Gauss-Markov

Piecewise polynomial

the usual suspect

Many proposed models:

- mathematical difficulties
- one size fits all...
- reality check
- Lena is not PC, but is she BV?

Current approaches to two dimensions....

Mostly separable, direct or tensor products

Fourier and wavelets are both direct product constructions

Wavelets: good for point singularities but what is needed are sparse coding of edge singularities!

- 1D: singularity 0-dimensional (e.g. spike, discontinuity)
- 2D: singularity 1-dimensional (e.g. smooth curve)

Recent work on geometric image processing

Long history: compression, vision, filter banks

Current affairs:

Signal adapted schemes

- Bandelets [LePennec & Mallat]: wavelet expansions centered at discontinuity as well as along smooth edges
- Non-linear tilings [Cohen, Mattei]: adaptive segmentation
- Tree structured approaches [Shukla et al, Baraniuk et al]

Bases and Frames

- Wedgelets [Donoho]: Basic element is a wedge
- Ridgelets [Candes, Donoho]: Basic element is a ridge
- Curvelets [Candes, Donoho]
 Scaling law: width ~length²
 L(R²) set up
- Multidirectional pyramids and contourlets [Do et al] Discrete-space set-up, I(Z²) Tight frame with small redundancy Computational framework

Nonseparable schemes and approximation

Approximation properties:

- wavelets good for point singularities
- ridgelets good for ridges
- curvelets good for curves

Consider c² boundary between two csts

Rate of approximation, M-term NLA in bases, c² boundary

- Fourier: O(M^{-1/2})
- Wavelets: O(M⁻¹)
- Curvelets: $O(M^{-2})$ Note: adaptive schemes, Bandelets: $O(M^{-\alpha})$

Multiresolution directional filterbanks and contourlets [M.Do]

Idea: find a direct discrete-space construction that has good approximation properties for smooth functions with smooth boundaries

- directional analysis as in a Radon transform
- multiresolution as in wavelets and pyramids
- computationally easy
- bases or low redundancy frame

Background:

- curvelets [Candes-Donoho] indicate that "good" fixed bases do exist for approximation of piecewise smooth 2D functions
- a frequency-direction relationship indicates a scaling law $d \sim j^{1/2}$
- an effective compression algorithm requires
 - close to a basis (e.g. tight frame with low redundancy)
 - discrete-space set up and computationally efficient

Question:

• can we go from $I(Z^2)$ to $L(R^2)$, just like filter banks lead to wavelets?

Answer:

contourlets!

Directional Filter Banks [BambergerS:92, DoV:02]

• divide 2-D spectrum into slices with iterated tree-structured f-banks

Fall 2006 - 56

Iterated directional filter banks: efficient directional analysis

Example:

Example of basis functions

- 6 levels of iteration, or 64 channels
- elementary filters are Haar filters
- orthonormal directional basis
- 64 equivalent filters, below the 32 "mostly horizontal" ones are shown

This ressembles a "local Radon transform", or radonlets!

- changes of sign (for orthonormality)
- approximate lines (discretizations)

Adding multiresolution: use a pyramid!

Result:

- "tight" pyramid and orthogonal directional channels => tight frame
- low redundancy < 4/3, computationally efficient

Basis functions: Wavelets versus contourlets

Approximation properties

Wavelets

M = 256, MSE = 1.44e-4

Contourlets

M = 4, MSE = 1.68e-4

M = 16, MSE = 1.63e-4

M = 64, MSE = 1.55e-4

M = 256, MSE = 1.43e-4

An approximation theorem

Curvelets lead to optimal approximation, what about contourlets?

Result [M.Do:03]

Simple B/W image model with c² boundary

Contourlet with scaling w ~ I² and 1 directional vanishing moment

Then the M-term NLA satisfies

$$|f - f_{contourlet}|^2 \sim \frac{1}{M^2}$$

Proof (very sketchy...):

- Amplitude of contourlets ~ $2^{-3j/4}$ and coeffs ~ $2^{-3j/4}$ I_{ikn}^3
- Three types of coefficients (significant which match direction insignificant that overlap, and zero)
- levels 3J and J, respectively, leading to M ~ $2^{3J/2}$
- squared error can be shown to be ~ 2^{-3J}

to all which sales which

Example: denoising with contourlets

Outline

- 1. Introduction through History
- 2. Fourier and Wavelet Representations
- 3. Wavelets and Approximation Theory
- 4. Wavelets and Compression
- 5. Going to Two Dimensions: Non-Separable Constructions
- 6. Beyond Shift Invariant Subspaces: Finite Rate of Innovation
 - Shift-Invariance and Multiresolution Analysis
 - A Variation on a Theme by Shannon
 - A Representation Theorem
- 7. Conclusions and Outlook

Shift-Invariance and Multiresolution Analysis

Most sampling results require shift-invariant subspaces

 $f(t) \in V \Leftrightarrow f(t - nT) \in V \quad n \in Z$

Wavelet constructions rely in addition on scale-invariance

 $f(t) \in V_0 \Leftrightarrow f(2^m t) \in V_{-m} \quad m \in Z$

Multiresolution analysis (Mallat, Meyer) gives a powerful framework. Yet it requires a subspace structure.

Example: uniform or B-splines

Question: can sampling be generalized beyond subspaces?

Note: Shannon BW sufficient, not necessary

A Variation on a Theme by Shannon

Shannon, BL case: $f(t) = \sum_{n \in Z} f(nT) sinc(t/T - n)$ or 1/T degrees of freedom per unit of time $n \in Z$

But: a single discontinuity, and no more sampling theorem...

Are there other signals with finite number of degrees of freedom per unit of time that allow exact sampling results?

=> Finite rate of innovation

Usual setup:

x(t): signal, $\phi(t)$: sampling kernel, y(t): filtering of x(t) and y_n : samples

A Toy Example

K Diracs on the interval: 2K degrees of freedom. Periodic case:

Key: The Fourier series is a weighted sum of K exponentials

$$X[m] = \frac{1}{\tau} \sum_{k=0}^{K-1} c_k e^{\frac{-j2\pi m t_k}{\tau}}$$

Result: Taking 2k+1 samples from a lowpass version of BW-(2K+1) allows to perfectly recover x(t)

Method: Yule-Walker system, annihilating filter, Vandermonde system

Note: Relation to spectral estimation and ECC (Berlekamp-Massey)

A Representation Theorem [VMB:02]

For the class of periodic FRI signals which includes

- sequences of Diracs
- non-uniform or free knot splines
- piecewise polynomials

there exist sampling schemes with a sampling rate of the order of the rate of innovation which allow perfect reconstruction at polynomial complexity

Variations: finite length, 2D, local kernels etc

The return of Strang-Fix!

local, polynomial complexity reconstruction, for diracs and piecewise polynomials

Conclusions

Wavelets and the French revolution

- too early to say?
- from smooth to piecewise smooth functions

Sparsity and the Art of Motorcycle Maintenance

- sparsity as a key feature with many applications
- denoising, inverse problems, compression

LA versus NLA:

approximation rates can be vastly different!

To first order, operational, high rate, D(R)

- improvements still possible
- low rate analysis difficult

Two-dimensions:

- really harder! and none used in JPEG2000...
- approximation starts to be understood, compression mostly open

Beyond subspaces:

• FRI results on sampling, many open questions!

Outlook

Do we understand image representation/compression better?

- high rate, high resolution: there is promise
- low rate: room at the bottom?

New images

• plenoptic functions (set of all possible images)

- non BL images (FRI?)
- manifolds, structure of natural images

Distributed images

- interactive approximation/compression
- SW, WZ, DKLT...

Why Image Representation Remains a Fascinating Topic...

Publications

For overviews:

- D.Donoho, M.Vetterli, R.DeVore and I.Daubechies, Data Compression and Harmonic Analysis, IEEE Tr. on IT, Oct.1998.
- M. Vetterli, Wavelets, Approximation and Compression, IEEE Signal Processing Magazine, Sept. 2001.

Research papers:

• See http://lcavwww.epfl.ch/

Recent Theses (online):

- C.Weidmann on rate-distortion analysis of NLA
- P.L.Dragotti on wavelet footprints
- Minh Do on contourlets
- P.Marziliano on new sampling theorems of non BL fcts

Publications

Books:

- M.Vetterli and J.Kovacevic, Wavelets and Subband Coding, Prentice-Hall (1995), Open Access (2007).
- M.Vetterli, J.Kovacevic and V.Goyal, The World of Fourier and Wavelets: Theory, Algorithms and Applications (2008)

