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From Rainbows to From Rainbows to SpectrasSpectras

Von Freiberg, 1304: Primary and secondary rainbow
Newton and Goethe
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Signal Representations (1/2)Signal Representations (1/2)

1807: Fourier upsets the French Academy....

Fourier Series: Harmonic series, frequency changes, f0, 2f0, 3f0, ...
But... 1898: Gibbs’ paper  1899: Gibbs’ correction

Orthogonality, convergence, complexity
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Signal Representations (2/2)Signal Representations (2/2)

1910: Alfred Haar discovers the Haar wavelet
“dual” to the Fourier construction

Haar series:
• Scale changes S0, 2S0, 4S0, 8S0 ...
• orthogonality
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Theorem 1 (Shannon-48, Whittaker-35, Nyquist-28, Gabor-46)Theorem 1 (Shannon-48, Whittaker-35, Nyquist-28, Gabor-46)
If a function f(t) contains no frequencies higher than W cps, it is completely
determined by giving its ordinates at a series of points spaced 1/(2W)
seconds apart.
[if approx. T long, W wide, 2TW numbers specify the function]

It is a representation theorem:
•                                   , is an orthogonal basis for BL
• f(t) in BL              can be written as

… slow…!

Note:
• Shannon-BW, BL sufficient, not necessary.
• many variations, non-uniform etc
• Kotelnikov-33!
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Representations, Bases and FramesRepresentations, Bases and Frames
Ingredients:

• as set of vectors, or “atoms”,
• an inner product, e.g.

• a series expansion

Many possibilities:
• orthonormal bases (e.g. Fourier series, wavelet series)
• biorthogonal bases
• overcomplete systems or frames

Note: no transforms, uncountable
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Approximations, Approximations, aproximationaproximation……

The linear approximation method

Given an orthonormal basis          for a space S and a signal

the best linear approximation is given by the projection onto a fixed sub-space
of size M (independent of f!)

The error (MSE) is thus

Ex: Truncated Fourier series
  project onto first M vectors corresponding to largest
  expected inner products, typically LP
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The The Karhunen-Loeve Karhunen-Loeve Transform: The Linear ViewTransform: The Linear View
Best Linear Approximation in an MSE sense:

Vector processes., i.i.d.:

Consider linear approximation in a basis

Then:

Karhunen-Loeve transform (KLT):
For 0<M<N, the expected squared error is minimized for the basis {gn}
where gm are the eigenvectors of Rx ordered in order of decreasing
eigenvalues.

Proof: eigenvector argument inductively.
Note: Karhunen-47, Loeve-48, Hotelling-33, PCA, KramerM-56, TC
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Compression: How many bits for Mona Lisa?Compression: How many bits for Mona Lisa?
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A few numbersA few numbers……

D. Gabor, September 1959 (Editorial IRE)
"... the 20 bits per second which, the psychologists assure us, the human
eye is capable of taking in, ...”

Index all pictures ever taken in the history of mankind
•

Huffman code Mona Lisa index
• A few bits (Lena Y/N?, Mona Lisa…), what about R(D)….

Search the Web!
• http://www.google.com, 5-50 billion images online, or 33-36 bits

JPEG
• 186K… There is plenty of room at the bottom!
• JPEG2000 takes a few less, thanks to wavelets…

Note: 2(256x256x8) possible images (D.Field)

Homework in Cover-Thomas, Kolmogorov, MDL, Occam etc
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Source Coding: some backgroundSource Coding: some background

Exchanging description complexity for distortion:
• rate-distortion theory [Shannon:58, Berger:71]
• known in few cases...like i.i.d. Gaussians (but tight: no better way!)

               or -6dB/bit

• typically: difficult, simple models, high complexity (e.g. VQ)
• high rate results, low rate often unknown
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New image coding standard New image coding standard …… JPEG 2000 JPEG 2000

From the comparison,
• JPEG fails above 40:1 compression
• JPEG2000 survives

Note: images courtesy of www.dspworx.com
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Representation, Approximation and Compression: Why does it matter anyway?Representation, Approximation and Compression: Why does it matter anyway?

Parsimonious or sparse representation of information is key in
• storage and transmission
• indexing, searching, classification, watermarking
• denoising, enhancing, resolution change

But: it is also a fundamental question in
• information theory
• signal/image processing
• approximation theory
• vision research

Successes of wavelets in image processing:
• compression (JPEG2000)
• denoising
• enhancement
• classification

Thesis: Wavelet models play an important role

Antithesis: Wavelets are just another fad!
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1. Introduction through History
2. Fourier and Wavelet Representations

• Fourier and Local Fourier Transforms
• Wavelet Transforms
• Piecewise Smooth Signal Representations

3. Wavelets and Approximation Theory
4. Wavelets and Compression
5. Going to Two Dimensions: Non-Separable Constructions
6. Beyond Shift Invariant Subspaces
7. Conclusions and Outlook
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Fourier and Wavelet Representations: SpacesFourier and Wavelet Representations: Spaces

Norms:

Hilbert spaces:

Inner product:

Orthogonality:

Banach spaces:

CP spaces: p-times diff. with bounded derivatives -> Taylor expansions

Holder/Lipschitz α : locally α smooth (non-integer)
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ExampleExample

consider   and

p < 1: quasi norm, p -> 0: sparsity measure



Fall 2006 - 20

AA  Tale of Two Representations: Fourier versus WaveletsTale of Two Representations: Fourier versus Wavelets

Orthonormal Series Expansion

Time-Frequency Analysis and Uncertainty Principle

Then

Not arbitrarily sharp in time
          and frequency!
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Local Fourier Basis?Local Fourier Basis?

The Gabor or Short-time Fourier Transform

Time-frequency atoms localized at

When           “small enough”

Example: Spectrogram
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The Bad NewsThe Bad News……

Balian-Low Theorem
       is a short-time Fourier frame with critical sampling

then either

or: there is no good local orthogonal Fourier basis!

Example of a basis: block based Fourier series

Note: consequence of BL Theorem on OFDM, RIAA
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The Good News!The Good News!

There exist good local cosine bases.

Replace complex modulation                 by appropriate cosine modulation

where w(t) is a power complementary window

Result: MP3!
Many generalisations…
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Example of time-frequency tiling, state of the art audio coderExample of time-frequency tiling, state of the art audio coder

In this example, it switches from 1024 channels down to 128, makes for pretty
crisp attacks!

It also makes the RIAA nervous….
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AnotherAnother  Good News!Good News!

Replace    (shift, modulation)

by    (shift, scale)

or

then there exist “good” localized orthonormal bases, or wavelet bases
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Examples of basesExamples of bases

    Haar Daubechies, D2
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Wavelets and representation of piecewise smooth functionsWavelets and representation of piecewise smooth functions

Goal: efficient representation of signals like

where:
• Wavelet act as singularity detectors
• Scaling functions catch smooth parts
• “Noise” is circularly symmetric

Note: Fourier gets all Gibbs-ed up!
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Key characteristics of wavelets and scaling functions (1/3)Key characteristics of wavelets and scaling functions (1/3)

Daubechies-88, Wavelets from filter banks, ortho-LP with N zeros at      ,

Scaling function:

Orthonormal wavelet family:

Scaling function and approximations
• Scaling  function         spans polynomials up to degree N-1

• Strang-Fix theorem: if          has N zeros at multiples of       (but the
origin), then                            spans polynomials up to degree N-1

• Two scale equation:

• Smoothness: follows from N,
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Key characteristics of wavelets and scaling functions (2/3)Key characteristics of wavelets and scaling functions (2/3)

Lowpass filters and scaling functions reproduce polynomials
• Iterate of Daubechies L=4 lowpass filter reproduces linear ramp

Scaling functions catch “trends” in signals

scaling
function

linear
ramp
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Key characteristics of wavelets and scaling functions (3/3)Key characteristics of wavelets and scaling functions (3/3)

Wavelet approximations
• wavelet     has N zeros moments, kills polynomials up to degree N-1
• wavelet of length L=2N-1, or 2N-1 coeffs influenced by singularity at each

scale, wavelet are singularity detectors,
• wavelet coefficients of smooth functions decays fast,

e.g. f in cP, m << 0

Note: all this is in 1 dimension only, 2D is another story…
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How about singularities?How about singularities?

If we have a singularity of order n at the origin
(0: Dirac, 1: Heaviside,…), the CWT transform behaves as

In the orthogonal wavelet series: same behavior, but only L=2N-1
coefficients influenced at each scale!
• E.g. Dirac/Heaviside: behavior as           and

Wavelets catch and characterize singularities!



Fall 2006 - 32

Thus: a piecewise smoothThus: a piecewise smooth  signal expands as:signal expands as:

• phase changes randomize signs, but not decay
• a singularity influence only L wavelets at each scale
• wavelet coefficients decay fast
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1. Introduction through History
2. Fourier and Wavelet Representations
3. Wavelets and Approximation Theory

• Non-linear approximation
• Fourier versus wavelet, LA versus NLA

4. Wavelets and Compression
5. Going to Two Dimensions: Non-Separable Constructions
6. Beyond Shift Invariant Subspaces
7. Conclusions and Outlook
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From linear to non-linear approximation theoryFrom linear to non-linear approximation theory

The non-linear approximation method
Given an orthonormal basis          for a space S and a signal

the best nonlinear approximation is given by the projection onto an adapted
subspace of size M (dependent on f!)

The error (MSE) is thus

and
Difference: take the first M coeffs (linear) or

      take the largest M coeffs (non-linear)

set of M largest
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From linear to non-linear approximation theoryFrom linear to non-linear approximation theory

Nonlinear approximation
• This is a simple but nonlinear scheme
• Clearly, if             is the NL approximation scheme:

This could be called “adaptive subspace fitting”
From a compression point of view, you “pay” for the adaptivity

• in general, this will cost
bits

These cannot be spent on coefficient representation anymore

LA: pick a subspace a priori       NLA: pick after seeing the data
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Non-Linear Approximation ExampleNon-Linear Approximation Example

Nonlinear approximation power depends on basis
Example:

Two different bases for
• Fourier series
• Wavelet series: Haar wavelets

Linear approximation in Fourier or wavelet bases

Nonlinear approximation in a Fourier basis

Nonlinear approximation in a wavelet basis
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Non-linear Approximation ExampleNon-linear Approximation Example

Fourier basis: N=1024, M=64, linear versus nonlinear

• Nonlinear approximation is not necessarily much better!

D= 2.7

D= 2.4
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Non-linear Approximation ExampleNon-linear Approximation Example

Wavelet basis: N=1024, M=64, J=6, linear versus nonlinear

• Nonlinear approximation is vastly superior!

D= 3.5

D= 0.01



Fall 2006 - 39

Nonlinear approximation theory and waveletsNonlinear approximation theory and wavelets

Approximation results for piecewise smooth fcts
• between discontinuities,

behavior by Sobolev or Besov regularity
• k derivatives  ⇒   coeffs                     when
• Besov spaces can be defined with wavelets bases. If

     then [DeVoreJL92]:
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Smooth versus piecewise smooth functions:Smooth versus piecewise smooth functions:

It depends on the basis and on the approximation method

s=2, N=2^16, D_3, 6 levels
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1. Introduction through History
2. Fourier and Wavelet Representations
3. Wavelets and Approximation Theory
4. Wavelets and Compression

• A small but instructive example
• Piecewise polynomials and D(R)
• Piecewise smooth and D(R)
• Improved wavelet schemes

5. Going to Two Dimensions: Non-Separable Constructions
6. Beyond Shift Invariant Subspaces
7. Conclusions and Outlook
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Wavelets and CompressionWavelets and Compression

Compression is just one bit trickier than approximation…
A small but instructive example:
Assume

•                   , signal is of length N, k is U[0, N-1] and     is
• This is a Gaussian RV at location k

• Note: Rx = l!

Linear approximation:

Non-linear approximation, M > 0:
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Given budget R for block of size N:Given budget R for block of size N:

1. Linear approximation and KLT: equal distribution of R/N bits

This is the optimal linear approximation and compression!

2. Rate-distortion analysis [Weidmann:99]

High rate cases:
• Obvious scheme: pointer + quantizer

• This is the R(D) behavior for R >> Log N
• Much better than linear approximation

Low rate case:

• Hamming case solved, inc. multiple spikes:
- there is a linear decay at low rates

• L2 case: upper bounds that beat linear approx.
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Piecewise smooth functions: pieces are Piecewise smooth functions: pieces are Lipschitz-Lipschitz-αα

The following D(R) behavior is reachable [CohenDGO:02]:

There are 2 modes:
•             corresponding to the Lipschitz-     pieces
•                          corresponding to the discontinuities



Fall 2006 - 45

Piecewise polynomial, with max degree NPiecewise polynomial, with max degree N

A.   Nonlinear approximation with wavelets having              zero moments

B.   Oracle-based method

Thus
• wavelets are a generic but suboptimal scheme
• oracle method asymptotically superior but dependent on the model

Conclusion on compression of piecewise smooth functions:
D(R) behavior has two modes:

• 1/polynomial decay: cannot be (substantially) improved
• exponential mode: can be improved, important at low rates
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Can we improve wavelet compression?Can we improve wavelet compression?

Key: Remove depencies across scales:
• dynamic programming: Viterbi-like algorithm
• tree based algorithms: pruning and joining
• wavelet footprints: wavelet vector quantization

Theorem [DragottiV:03]:
Consider a piecewise smooth signal f(t), where pieces are Lipschitz-   .
There exists a piecewise polynomial p(t) with pieces of maximum degree
such that the residual
is uniformly Lipschitz-    .

This is a generic split into piecewise polynomial and smooth residual
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Footprint Basis and FramesFootprint Basis and Frames

Suboptimality of wavelets for piecewise polynomials is due to
independent coding of dependent wavelet coefficients

Compression with wavelet footprints

Theorem: [DragottiV:03]
Given a bounded piecewise polynomial of deg D with K discontinuities.
Then, a footprint based coder achieves

This is a computational effective method to get oracle performance
What is more, the generic split “piecewise smooth” into “uniformly smooth +

piecewise polynomial” allows to fix wavelet scenarios, to obtain

This can be used for denoising and superresolution
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Denoising Denoising (use coherence across scale)(use coherence across scale)

This is a vector thresholding
method adapted to wavelet
singularities
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1. Introduction through History
2. Fourier and Wavelet Representations
3. Wavelets and Approximation Theory
4. Wavelets and Compression
5. Going to Two Dimensions: Non-Separable Constructions

• The need for truly two-dimensional constructions
• Tree based methods
• Non-separable bases and frames

6. Beyond Shift Invariant Subspaces
7. Conclusions and Outlook
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Going to Two Dimensions: Non-Separable ConstructionsGoing to Two Dimensions: Non-Separable Constructions

Going to two dimensions requires non-separable bases
Objects in two dimensions we are interested in

• textures:                                     per pixel
• smooth surfaces:                                      per object!
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Models of the world:Models of the world:

        Gauss-Markov               Piecewise polynomial         the usual suspect

Many proposed models:
• mathematical difficulties
• one size fits all…
• reality check
• Lena is not PC, but is she BV?
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Current approaches to two dimensionsCurrent approaches to two dimensions……..

Mostly separable, direct or tensor products

Fourier and wavelets are both direct product constructions

Wavelets: good for point singularities but what is needed are sparse
coding of edge singularities!
• 1D: singularity 0-dimensional (e.g. spike, discontinuity)
• 2D: singularity 1-dimensional (e.g. smooth curve)

DWT
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Recent work on geometric image processingRecent work on geometric image processing

Long history: compression, vision, filter banks

Current affairs:

Signal adapted schemes
• Bandelets [LePennec & Mallat]: wavelet expansions centered at

discontinuity as well as along smooth edges
• Non-linear tilings [Cohen, Mattei]: adaptive segmentation
• Tree structured approaches [Shukla et al, Baraniuk et al]

Bases and Frames
• Wedgelets [Donoho]: Basic element is a wedge
• Ridgelets [Candes, Donoho]: Basic element is a ridge
• Curvelets [Candes, Donoho]

Scaling law: width ~length2

L(R2) set up
• Multidirectional pyramids and contourlets [Do et al]

Discrete-space set-up, l(Z2)
Tight frame with small redundancy
Computational framework
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Nonseparable Nonseparable schemes and approximationschemes and approximation
Approximation properties:

• wavelets good for point singularities
• ridgelets good for ridges
• curvelets good for curves

Consider c2 boundary between two csts

Rate of approximation, M-term NLA in bases, c2 boundary
• Fourier: O(M-1/2)
• Wavelets: O(M-1)
• Curvelets: O(M-2)           Note: adaptive schemes, Bandelets: O(M-α)
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Multiresolution Multiresolution directional directional filterbanks filterbanks and and contourlets contourlets [M.Do][M.Do]

Idea: find a direct discrete-space construction that has good approxi-
mation properties for smooth functions with smooth boundaries
• directional analysis as in a Radon transform
• multiresolution as in wavelets and pyramids
• computationally easy
• bases or low redundancy frame

Background:
• curvelets [Candes-Donoho] indicate that “good” fixed bases do exist for

approximation of piecewise smooth 2D functions
• a frequency-direction relationship indicates a scaling law
• an effective compression algorithm requires

- close to a basis (e.g. tight frame with low redundancy)
- discrete-space set up and computationally efficient

Question:
• can we go from l(Z2) to L(R2), just like filter banks lead to wavelets?

Answer:
• contourlets!
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Directional Filter Banks [Directional Filter Banks [BambergerSBambergerS:92, :92, DoVDoV:02]:02]

• divide 2-D spectrum into slices with iterated tree-structured f-banks

fan filters

quincunx
sampling

shearing
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Iterated directional filter banks: efficient directional analysisIterated directional filter banks: efficient directional analysis

Example:
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Example of basis functionsExample of basis functions

• 6 levels of iteration, or 64 channels
• elementary filters are Haar filters
• orthonormal directional basis
• 64 equivalent filters, below the 32 “mostly horizontal” ones are shown

This ressembles a “local Radon transform”, or radonlets!
• changes of sign (for orthonormality)
• approximate lines (discretizations)
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Adding Adding multiresolutionmultiresolution: use a pyramid!: use a pyramid!

Result:
• “tight” pyramid and orthogonal directional channels => tight frame
• low redundancy < 4/3, computationally efficient
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Basis functions: Wavelets versus Basis functions: Wavelets versus contourletscontourlets

         Wavelets Contourlets
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Approximation propertiesApproximation properties

Wavelets

Contourlets
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An approximation theoremAn approximation theorem

Curvelets lead to optimal approximation, what about contourlets?

Result [M.Do:03]
Simple B/W image model with c2 boundary
Contourlet with scaling w ~ l2 and 1 directional vanishing moment
Then the M-term NLA satisfies

Proof (very sketchy...):
- Amplitude of contourlets ~ 2-3j/4 and coeffs ~2-3j/4 l3jkn

- Three types of coefficients (significant which match direction insignificant
   that overlap, and zero)
- levels 3J and J, respectively, leading to M ~ 23J/2

- squared error can be shown to be ~ 2-3J
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Example: Example: denoising denoising with with contourletscontourlets

original noisy

wavelet
13.8 dB

countourlets
       15.4 dB
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1. Introduction through History
2. Fourier and Wavelet Representations
3. Wavelets and Approximation Theory
4. Wavelets and Compression
5. Going to Two Dimensions: Non-Separable Constructions
6. Beyond Shift Invariant Subspaces: Finite Rate of Innovation

• Shift-Invariance and Multiresolution Analysis
• A Variation on a Theme by Shannon
• A Representation Theorem

7. Conclusions and Outlook
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Shift-Invariance and Shift-Invariance and Multiresolution Multiresolution AnalysisAnalysis

Most sampling results require shift-invariant subspaces

Wavelet constructions rely in addition on scale-invariance

Multiresolution analysis (Mallat, Meyer) gives a powerful framework.
Yet it requires a subspace structure.

Example: uniform or B-splines

Question: can sampling be generalized beyond subspaces?

Note: Shannon BW sufficient, not necessary
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Shannon, BL case:                      or 1/T degrees of
freedom per unit of time

But: a single discontinuity, and no more sampling theorem...

Are there other signals with finite number of degrees of freedom per unit
of time that allow exact sampling results?
=> Finite rate of innovation

Usual setup:

x(t): signal, φ(t): sampling kernel, y(t): filtering of x(t) and yn: samples

A Variation on a Theme by ShannonA Variation on a Theme by Shannon
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A Toy ExampleA Toy Example

K Diracs on the interval: 2K degrees of freedom. Periodic case:

Key: The Fourier series is a weighted sum of K exponentials

Result: Taking 2k+1 samples from a lowpass version of BW-(2K+1)
allows to perfectly recover x(t)

Method: Yule-Walker system, annihilating filter, Vandermonde system

Note: Relation to spectral estimation and ECC (Berlekamp-Massey)
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A Representation Theorem [VMB:02]A Representation Theorem [VMB:02]

For the class of periodic FRI signals which includes
• sequences of Diracs
• non-uniform or free knot splines
• piecewise polynomials

there exist sampling schemes with a sampling rate of the order of the rate
of innovation which allow perfect reconstruction at polynomial complexity

Variations: finite length, 2D, local kernels etc
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A local algorithm for FRI samplingA local algorithm for FRI sampling

The return of Strang-Fix!

local, polynomial complexity reconstruction, for diracs and piecewise
polynomials
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ConclusionsConclusions

Wavelets and the French revolution
• too early to say?
• from smooth to piecewise smooth functions

Sparsity and the Art of Motorcycle Maintenance
• sparsity as a key feature with many applications
• denoising, inverse problems, compression

LA versus NLA:
• approximation rates can be vastly different!

To first order, operational, high rate, D(R)
• improvements still possible
• low rate analysis difficult

Two-dimensions:
• really harder! and none used in JPEG2000...
• approximation starts to be understood, compression mostly open

Beyond subspaces:
• FRI results on sampling, many open questions!
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OutlookOutlook

Do we understand image representation/compression better?
• high rate, high resolution: there is promise
• low rate: room at the bottom?

New images
• plenoptic functions (set of all possible images)

• non BL images (FRI?)
• manifolds, structure of natural images

Distributed images
• interactive approximation/compression
• SW, WZ, DKLT...
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Why Image Representation Remains a Fascinating TopicWhy Image Representation Remains a Fascinating Topic……
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PublicationsPublications

For overviews:
• D.Donoho, M.Vetterli, R.DeVore and I.Daubechies, Data

Compression and Harmonic Analysis, IEEE Tr. on IT, Oct.1998.
• M. Vetterli, Wavelets, Approximation and Compression, IEEE

Signal Processing Magazine, Sept. 2001.

Research papers:
• See http://lcavwww.epfl.ch/

Recent Theses (online):
• C.Weidmann on rate-distortion analysis of NLA
• P.L.Dragotti on wavelet footprints
• Minh Do on contourlets
• P.Marziliano on new sampling theorems of non BL fcts
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PublicationsPublications

Books:
• M.Vetterli and J.Kovacevic, Wavelets and Subband Coding,

Prentice-Hall (1995), Open Access (2007).
• M.Vetterli, J.Kovacevic and V.Goyal, The World of Fourier and

Wavelets: Theory, Algorithms and Applications (2008)
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Thank you for your attention!Thank you for your attention!


