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From Raimnpows torSpectras

Von Freiberg, 1304: Primary and secondary rainbow
Newton and Goethe

-
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Signalikepresentations (172)

1807: Fourier upsets the French Academy....

fit) 4

=/\/\/+/\/\/+’\/\/

Fourier Series: Harmonic series, frequency changes, f;,, 2f,, 3f;, ...
But... 1898: Gibbs’ paper 1899: Gibbs’ correction

/|

/ W’

Orthogonality, convergence, complexity

-~
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SignaliRepresentations (2/2)

1910: Alfred Haar discovers the Haar wavelet
“dual” to the Fourier construction

Haar series:
« Scale changes S, 25, 4S5, 85, ...
e orthogonality

m=1 I » i

m=0 p
1

m = -1 » t
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rheoremr i (Shannon=4a, Whittaker=5s, Nyquist=26; Gabor-46)

If a function f(t) contains no frequencies higher than W cps, it is completely
determined by giving its ordinates at a series of points spaced 1/(2W)
seconds apart.

[if approx. T long, W wide, 2TW numbers specify the function]

It is a representation theorem:
o {sinc(t — n)},, in z is an orthogonal basis for BL[—, 7]
e f(t)in BL[—, 7] can be written as f(t) = ) f(n) - sinc(t — n)
T

... Slow...!

Note:
« Shannon-BW, BL sufficient, not necessary.

e many variations, non-uniform etc
o Kotelnikov-33!




IREPresentations, Bases and Frames

Ingredients:
* as set of vectors, or “atoms”, {<Pn}
e aninner product, e.g. (pn, f) = J(on - f)

e a series expansion

F@) = {en, f) - on(t)

mn
Many possibilities:
e orthonormal bases (e.g. Fourier series, wavelet series)
e biorthogonal bases

e overcomplete systems or frames

€ €1 = ¥
Do P

@4 @
OB BOB

Note: no transforms, uncountable

e

.
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Approximations,

The linear approximation method

Given an orthonormal basis { gy, } for a space S and a signal

the best approximation is given by the projection onto a sub-space
of size M ( of fl)
fv= > {fign) - 9gn
neJy

The error (MSE) is thus
712 2
em=1If=Fl1F= 2 [{fign)|

n¢Jyr
Ex: Truncated Fourier series

project onto first M vectors corresponding to largest
expected inner products, typically LP

e e RN — . 72! 205 - 10




The Karhunen-LCoeve ffranstorm: Tthe CinearView

Best Linear Approximation in an MSE sense:

Vector processes., i.i.d.:
X = [Xo,X1,...,Xy-1]"  ElXj)=0 EX XT]=Ry

Consider linear approximation in a basis

M-1
Xy = D> (X,gn) - 9n M <N
n=0
Then: N_1
Eley] = Z (Rxgn,gn)
n=M

Karhunen-Loeve transform (KLT):

For 0<M<N, the expected squared error is minimized for the basis {g,}
where g,, are the eigenvectors of R, ordered in order of decreasing
eigenvalues.

Proof: eigenvector argument inductively.
Note: Karhunen-47, Loeve-48, Hotelling-33, PCA, KramerM-56, TC




Compression: How many bits ior Vienartisa?




D. Gabor, September 1959 (Editorial IRE)

"... the 20 bits per second which, the psychologists assure us, the human
eye is capable of taking in, ...”

Index all pictures ever taken in the history of mankind
e 100 years- 1010 ~ 44 bits

Huffman code Mona Lisa index
* A few bits (Lena Y/N?, Mona Lisa...), what about R(D)....

Search the Web!
e http://www.google.com, 5-50 billion images online, or 33-36 bits

JPEG

o 186K... There is plenty of room at the bottom!
« JPEG2000 takes a few less, thanks to wavelets...

Note: 2(256x256x8) possible images (D.Field)

Homework in Cover-Thomas, Kolmogorov, MDL, Occam etc




Source Coding:'somerbackgrotnd

Exchanging description complexity for distortion:
e rate-distortion theory [Shannon:58, Berger:71]
* known in few cases...like i.i.d. Gaussians (but tight: no better way!)

A distorsion

N(0,62) D(R)=02-272%  or-6dB/bit

complexity
-

 typically: difficult, simple models, high complexity (e.g. VQ)
e high rate results, low rate often unknown




Original Lena Image (256 x 256 Pixels, JPEG Compressed (Compression Ratio Jpéagooo Compressed (Compression
24-Bit RGB) 43:1) Ratio 43:1)

From the comparison,
e JPEG fails above 40:1 compression
o JPEG2000 survives

Note: images courtesy of www.dspworx.com

- ——— - -
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Representation, Approximaton and Compression: VWhy dees It matter-anyway:?

Parsimonious or sparse representation of information is key in
e storage and transmission
e indexing, searching, classification, watermarkina
e denoising, enhancing, resolution change

harmonic

But: it is also a fundamental question in : :
information .
analysis

e information theory theory
e signal/image processing
e approximation theory

e vision research

Successes of wavelets in image processing:

_ signal
e compression (JPEG2000) processing

e denoising
e enhancement

e classification

Wavelet models play an important role

Wavelets are just another fad!

[ ——— -~
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FourierandWWavelet Representations: Spaces

Norms:

felp= (Dlelnli")? 1A= [P at)?

Hilbert spaces:
12(Z) = {z: (|]z]l2< o0)} Lo(R) = {f:(Ifll2< o0)}
Inner product:
(@,y) = Yo" Inlyln] (f,9) = | (gt
Orthogonality:n
rzly < (x,y) =0
Banach spaces:
x, f s.t. ||z|lp, ||fllp< 00 pgeneral p=1andp = oo of particular interest
CP spaces: p-times diff. with bounded derivatives -> Taylor expansions

Holder/Lipschitz o : locally &« smooth (non-integer)




Example

consider z€ R’ and |z||,= 1

x[1]
/’——p = 0O
p=2
0.5 i
—p =1
0 » x| 0
P [0]
| K ——0<p<l1

p <1: quasi norm, p -> 0: sparsity measure

-~
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ATlrale ol worRepresentations: FourierversustVWavelets

Orthonormal Series Expansion

f=2 anpn  an={n,f) (pn, om) = dn—m [ ll2=]ledl2

Time-Frequency Analysis and Uncertainty Principle

fO) = F@) A= [21@ld  A2= [w?|FW)]de

Then -

Af- AL >

(0))
? 0007
7/// / Not arbitrarily sharp in time
77
z é and frequency!
"t




Cocal"Fourier Basis?

The Gabor or Short-time Fourier Transform

em,n(t) = w(t — nT)e Jmwo(t—nT)

Time-frequency atoms localized at (n1", mwq)

frequency
A

|l
time
When T', wq “small enough”

f(t) ~ C- Fm’n@m’n(t) Whet’e Fm)n — <S0m7n, f>

Example: Spectrogram

e T et — . 7! 2005 -




TThe Bad News:...

Balian-Low Theorem

®m,n is a short-time Fourier frame with critical sampling (T'wg = 27)

then either
Atz = o0 Or Ag = 00

or: there is no good local orthogonal Fourier basis!

Example of a basis: block based Fourier series

T L e

T oU U \/T 2T

Note: consequence of BL Theorem on OFDM, RIAA

e e e RN — . P! 005 22




TThe Good News!

There exist good local cosine bases.

Replace complex modulation (ejm""ot) by appropriate cosine modulation
1 T
omn(t) = w(t—nT) cos (%( —|—§> (t—nT—FE))

where w(t) is a power complementary window
MW —nT)|=1
n

[w(t)|?

Result: MP3!
Many generalisations...

- ——
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Examplerortime-irequency tiling; stateroi e artaudiocoder:

| | | | | | ]

)
<
k!
g

1 T = T Y T T

Vs \ iﬁl Af | || A ' |' Af ' || 'I.‘ {

@
g () M X X
it
go ! ‘I' (Al .1 [i\ /i\ /1)
. | |I | FY Y 3 NS BN

0 / I 1"‘ . ‘I‘a"l L I"L ll“ \ ."" L 'J' L‘,.x‘,' 1 l"‘L I

0 20 40 60 120 140 160 180 200

hme [ms]

In this example, it switches from 1024 channels down to 128, makes for pretty
crisp attacks!

It also makes the RIAA nervous....




Another Good ' News!

Replace (shift, modulation)
by (shift, scale)

or
t —2™Mn

2m

Ymn(t) = 2—%( ) n.m € Z

then there exist “good” localized orthonormal bases, or wavelet bases

frequency
W :

>
time

L———-——‘L—_‘-h gl 2006 -
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Examples oibases

1 U | | | | | | |
S WAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVAVA
I A A A /A A /A VA A VA Ve Ve /4
1 h® B ; 10 15 2 25 30 =
1 ] ] ' ' ' ' . |
AR L AAAAAAAAA
T T Vv Yy Yy Vv Vv Yy Vv
. -, 5 10 15 20 25 30 35 20
A ] | |
0 /\ //l
~ -
o —10 5 10 15 20 25 30 %5 20 45
DD
o 5 10 15 20 25 30 3 10 45
Haar Daubechies, D,

L‘“-A L2006 - 26



Wavelets and representation ol plecewise simooth itinclions

Goal: efficient representation of signals like

bof) Scaling functions
Y
- time
_—+— Noise
| N "’\; N N m‘/n(\)m
¥} ‘\/ y; ‘\/I/\f\ AR \
W;/elets

where:
 Wavelet act as singularity detectors
e Scaling functions catch smooth parts
 “Noise” is circularly symmetric

Note: Fourier gets all Gibbs-ed up!

L e ™ e ot Fall 2006 - 27




Key characteristics orwavelets'andrscalingriinctions (175)

Daubechies-88, Wavelets from filter banks, ortho-LP with N zeros at 77,
G(z) = (1 +2z"HY R(2)
- : . o0 A w
Scaling function: o) =] G <6J (§>>

1=1

Orthonormal wavelet family: i (£) = 2—%¢(2—mt n)
m,n — o

Scaling function and approximations
e Scaling function (t)spans polynomials up to degree N-1

ch'go(t—n)ztk k=0,1,.... N -1
n

o Strang-Fix theorem: if ©(w)has N zeros at multiples of 27 (but the
origin), then{¢(t — n) },,cz spans polynomials up to degree N-1

e Two scale equation:

sa(t)z%;gn-@(zt—n)

« Smoothness: follows from N, oo = 0,203 N




Key'characteristicsrorwavelets'andrscalingritinctions (2/5)

Lowpass filters and scaling functions reproduce polynomials
» lterate of Daubechies L=4 lowpass filter reproduces linear ramp

0.2F
015} scaling
01} function
0.05F
0 -
0.05 I 1 ! 1 =
0 50 100 150 200 250
500 T T T T T T T T .
200l 1 linear
300 - . ramp
200 .
100 -
0
~ \/
-100
_200 | | | | | | | Il
0 50 100 150 200 250 300 350 400 450

Scaling functions catch “trends” in signals




Key'characteristics o waveletsrandrscalingritinections (5/5)

Wavelet approximations
. wavelet ¥ has N zeros moments, kills polynomials up to degree N-1

« wavelet of length L=2N-1, or 2N-1 coeffs influenced by singularity at each
scale, wavelet are singularity detectors,

« wavelet coefficients of smooth functions decays fast,
e.g.fincP, m<<0 1
(Ym,n, f) = c2"m(P3)

Note: all this is in 1 dimension only, 2D is another story...

2

8 | | /

- -
1 i \ B
\
05} \ J
\ ,
ok / \. /\J/ ~_
-05 I /
_1 - “‘.‘
: \ . A

-1.5
0

I
0.5 1 1.5 2 25 3

2

151
1r X
0.5 \

-0.5
-1}

-1.5
0

9‘0 4‘0 6;0 8‘0 1 {I)O 120 140 1 E;{) 1 F;ﬂ 200
—
—
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HeW apoutsingularities?

If we have a singularity of order n at the origin
(0: Dirac, 1: Heaviside,...), the CWT transform behaves as

X(a,0) =cp - al ~3)

large

///////////
/////// // /////////////////////////

In the orthogonal wavelet series: same behavior, but only L=2N-1
coefficients influenced at each scale!

e E.g. Dirac/Heaviside: behavior as 2772 and 2%, m << 0

Wavelets catch and characterize singularities!

R —— - -
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TRUST a piecewisersmooti signal expanadsras:

I I l ! ! I I I ! !
0 100 200 300 400 500 600 700 800 900 1000

« phase changes randomize signs, but not decay
« a singularity influence only L wavelets at each scale
« wavelet coefficients decay fast

- u= ~ . Fall 2006 - 32
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Fromriinearte nen-linearapproxination taeory.

The non-linear approximation method
Given an orthonormal basis { gn, } for a space S and a signal

=) (f,9n) - 9n

the best approximation is given by the projection onto an
subspace of size M ( on fl)
far= 2 (fign) - gn
nelys

Ipg: ‘<f7 9n>|n€IM > |<f7 gm>lm¢]M set of M largest( , )

The error (MSE) is thus &y =|| f — f ||I°= > S, gn)|?

né¢ly
and €7 < ey
Difference: take the M coeffs (linear) or
take the M coeffs (non-linear)




Fromriinearte nen-linearapproxination taeory.

Nonlinear approximation
e This is a simple but nonlinear scheme
« Clearly, if A;(.)is the NL approximation scheme:

Ap(z) + Ay (y) = Ap(z +y)

»

This could be called “
From a compression point of view, you “pay” for the adaptivity

e in general, this will cost
log ([1']) bits

These cannot be spent on coefficient representation anymore
A A

LA: pick a subspace a priori NLA: pick after seeing the data

| S—
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Non-LCinearApproximation Example

Nonlinear approximation power depends on basis

A (D)

cst

| >t
1/sqrt2 1
Two different bases for [0, 1] :

. Fourier series {27},
e Wavelet series: Haar wavelets

1
Linear approximation in Fourier or wavelet bases ¢, ~ IV;
: L : : ~ 1
Nonlinear approximation in a Fourier basis EN [V
. L . ~ 1
Nonlinear approximation in a wavelet basis EN ™ ST




NonR-linear ApproximationrExample

Fourier basis: N=1024, M=64, linear versus nonlinear

0 100 200 300 400 500 600 700 800 900 1000

0 100 200 300 400 500 600 700 800 900 1000

* Nonlinear approximation is not necessarily much better!

- - -

——
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NonR-linear ApproximationrExample

Wavelet basis: N=1024, M=64, J=6, linear versus nonlinear

0.5 n
0
| | | 1 1 | | | ! 1
0 100 200 300 400 500 600 700 800 900 1000
T T T T T T T T T T
1 -
0.5 _ A
0 \/\\,
| ! ! 1 1 | | | Il 1
0 100 200 300 400 500 600 700 800 900 1000
T T T T T T T T T T
1 — —
0.5
0
Il Il 1 1 1 | | | Il 1
0 100 200 300 400 500 600 700 800 900 1000

* Nonlinear approximation is vastly superior!

D= 0.01

——
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Nonlinear approximation theory and wavelets

A1)

Approximation results for piecewise smooth fcts

e between discontinuities,
behavior by Sobolev or Besov regularity

* Kk derivatives = coeffs ~ Qm(k_%‘) when m < 0O
* Besov spaces can be defined with wavelets bases. If

1
1 £ llap= (3 (f: gn)P)? < oo 0<p<?

then
2

En = O(Ml_ﬁ)




SMOotN Versus plecewise smootn iunctions:

It depends on the basis and on the approximation method

08

08

04

02

-0.2

-04

0.6

-0.8

s=2, N=2*"6, D_3, 6 levels

MSE

MSE

Linear Approximation Error for Smooth Functions

Fourier
Wavelet

10°
Number of retained coefficients (N)

Nonlinear Approximation Error for Piecewise Smooth Functions

——

-~
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Waveletsrand Compression

Compression is just one bit trickier than approximation...
A small but instructive example:

Assume
« x[n] = ad[n — k] , signal is of length N, k is U[0, N-1]and ais N(0, 1)
e This is a Gaussian RV at location k

A ~N(0,1)
A
K N
. Note:R, = 1!

1
Linear approximation: EN = i

Non-linear approximation, M > 0: ey =0




Givenrbudget Rorbleck ol size"N:

1. Linear approximation and KLT: equal distribution of R/N bits
D(R) = c- o2 .2 2(8/N)

This is the optimal linear approximation and compression!
2. Rate-distortion analysis [Weidmann:99]

High rate cases:
e Obvious scheme: pointer + quantizer
D(R) = ¢ 52 . 2—2(R—logN)

e This is the R(D) behavior for R >> Log N
e Much better than linear approximation

011 L.
Low rate case: P

 Hamming case solved, inc. multiple spikes: .
- there is a linear decay at low rates ST e

e L2 case: upper bounds that beat linear approx.




PIeCEewWISE Smoot fURCoNS: pleCES are LipSCitz=«

bt Scaling functions
A—“’"'__ - ||‘
Y
= time
—+—— Noise
AN -
Il‘u‘ I\[/‘ f‘\) I\){"/\Jr\. J‘ﬂvﬁ\f\)ﬁ\‘;\/{\
\
Wavelets

The following D(R) behavior is reachable [CohenDGO:02]:
D(R) =ci-R 294 c3-/R.-2-a VR

There are 2 modes:
. R2¢ corresponding to the Lipschitz- O pieces
- VR 2_0'@ corresponding to the discontinuities

e e S Pl 2000 - 44




PIiecewiser polynomial] withfmax degree’N

Nonlinear approximation with wavelets having N+ 1 zero moments

Dy(R) =C,,- (1 + a\/m) . o—VCOwR

Oracle-based method
Dy(R) = C, - 2=(CpF)

Thus
e wavelets are a generic but suboptimal scheme
e oracle method asymptotically superior but dependent on the model

Conclusion on compression of piecewise smooth functions:
D(R) behavior has two modes:

D(R)=c1 - R 2%+ ¢c3-V/R-2" VR

e 1/polynomial decay: cannot be (substantially) improved
e exponential mode: can be improved, important at low rates

M jigll 2006 - 45



Can'we improve wavelet compression?

Key: Remove depencies across scales:
e dynamic programming: Viterbi-like algorithm
e tree based algorithms: pruning and joining
e wavelet footprints: wavelet vector quantization

Theorem [DragottiV:03]:

Consider a piecewise smooth signal f(t), where pieces are Lipschitz- .
There exists a piecewise polynomial p(t) with pieces of maximum degree | « |
such that the residual r,(t) = f(t) — p(t)

is uniformly Lipschitz- cx.

This is a generic split into piecewise polynomial and smooth residual

A A A
ﬂ\_/\( C /L +
> - AU/(\/‘V /\\j/\\/‘
function f(t) piecewise polynomial Lipschitz-a

- -—— - -
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Footprint Basistand Frames

Suboptimality of wavelets for piecewise polynomials is due to
independent coding of dependent wavelet coefficients

Dy (R) ~C-vR-2-VR
Compression with wavelet footprints

Theorem: [DragottiV:03]

Given a bounded piecewise polynomial of deg D with K discontinuities.
Then, a footprint based coder achieves

D(R) = ¢y - 2~ (c2'R)

This is a computational effective method to get oracle performance

What is more, the generic split “piecewise smooth” into “uniformly smooth +
piecewise polynomial” allows to fix wavelet scenarios, to obtain

D(R) = c1 - R™2¢ 4 co - D—c3ht

This can be used for denoising and superresolution

M jgll 2006 - 47




IDEenorsing’ (Use 'conerence across scale)

|“",1‘,)w4}'1lll’ |
Il

e f'\ !
) b” U 'l"'ﬁl:‘ U it
,IH AL ,“*‘W‘f“«'1“"“’”"'1.""

00

Hard-Thresholding (SNR=21.3dB) Cycle-Spinning (SNR=25.4dB)

| | This is a vector thresholding
- method adapted to wavelet
ol | singularities

- Fall 2006 - 48
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Goeingreriwo BDinmensions: Non=Separable’Construcions

Going to two dimensions requires non-separable bases
Objects in two dimensions we are interested in

! smooth boundary c?

/

texture .

T
/,‘ull | ,

o textures: D(R) = Cj - 27 2% per pixel
« smooth surfaces: D(R) = C7 - 2724 per object!

smooth surface, polynomial

-~

— : Fall 2006 - 50




Gauss-Markov Piecewise polynomial the usual suspect

Many proposed models:
e mathematical difficulties
e one size fits all...
e reality check
e Lenais not PC, but is she BV?

| = ' “ | Fall 2006 - 51



CUrrent approaches to two dimensions::..

Mostly separable, direct or tensor products

Fourier and wavelets are both direct product constructions

Wavelets: good for point singularities but what is needed are sparse
coding of edge singularities!

e 1D: singularity 0O-dimensional (e.g. spike, discontinuity)
e 2D: singularity 1-dimensional (e.g. smooth curve)




IRECENTWOrK e gecmetric image processing

Long history: compression, vision, filter banks
Current affairs:

Signal adapted schemes

 Bandelets [LePennec & Mallat]: wavelet expansions centered at
discontinuity as well as along smooth edges

e Non-linear tilings [Cohen, Mattei]: adaptive segmentation
e Tree structured approaches [Shukla et al, Baraniuk et al]

Bases and Frames

 Wedgelets [Donoho]: Basic element is a wedge
e Ridgelets [Candes, Donoho]: Basic element is a ridge
e Curvelets [Candes, Donoho]
Scaling law: width ~length?
L(R?) set up
e Multidirectional pyramids and contourlets [Do et al]
Discrete-space set-up, 1(Z2)
Tight frame with small redundancy
Computational framework




NORSseparanlerschemes ana approximation

Approximation properties:
» wavelets good for point singularities
e ridgelets good for ridges
e curvelets good for curves

Consider ¢2 boundary between two csts

# wavelet coeffs O(2j) # curvelet coeffs 0(2j/2)

i

|
l
r

Rate of approximation, M-term NLA in bases, cZ boundary
e Fourier: O(M-12)
 Wavelets: O(M1)
e Curvelets: O(M-2) Note: adaptive schemes, Bandelets: O(M-%)

e

< Fall 2006 - 54




Vitltiresolutiondirectional filterbanks and contourlets [IVI.Do]

Idea: find a direct discrete-space construction that has good approxi-
mation properties for smooth functions with smooth boundaries

e directional analysis as in a Radon transform
e multiresolution as in wavelets and pyramids
e computationally easy

e bases or low redundancy frame

Background:

e curvelets [Candes-Donoho] indicate that “good” fixed bases do exist for
approximation of piecewise smooth 2D functions

» a frequency-direction relationship indicates a scaling law d ~ jl/
e an effective compression algorithm requires

- close to a basis (e.g. tight frame with low redundancy)

- discrete-space set up and computationally efficient

2

Question:
e can we go from I(Z2) to L(R?), just like filter banks lead to wavelets?

Answer:
e contourlets!

| — M Fall 2006 - 55




Directional FliterBanks | Bambergers:92,; DeV:02]

« divide 2-D spectrum into slices with iterated tree-structured f-banks

fan filters

quincunx
sampling

shearing

w2

(pi,pi)

wi

e T et — . 7! 200550
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Examplerorpbasis itinctions

* 6 levels of iteration, or 64 channels

e elementary filters are Haar filters

e orthonormal directional basis

e 64 equivalent filters, below the 32 “mostly horizontal” ones are shown

This ressembles a “local Radon transform”, or radonlets!
e changes of sign (for orthonormality)
e approximate lines (discretizations)

M jigll 2006 - 58




Adding' multiresolution: userarpyramid!

bandpass
. @» > | directional
] channels

_ / bandpass
Image directional
I B - channels

/

/
\

\

Result:

e “tight” pyramid and orthogonal directional channels => tight frame
e low redundancy < 4/3, computationally efficient

Fall 2006 - 59




Basis functions: VWavelets versus contouriets

50 50

100 100

150 150

p)
250 250

50 100 150 200 50 100 150 200 25(

Wavelets Contourlets
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AppProximationrproperties

Wavelets

M =4, MSE = 1.68e-4 =16, MSE = 1.66e-4 M = 64, MSE = 1.60e-4 M =256, MSE = 1.44e-4

Contourlets

M =4, MSE = 1.68e-4 M =16, MSE = 1.63e-4 M = 64, MSE = 1.55e-4 M = 256, MSE = 1.43e-4
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ARrapproximaton tneorem

Curvelets lead to optimal approximation, what about contourlets?

Result [M.Do:03]

Simple B/W image model with ¢c2 boundary

Contourlet with scaling w ~ |2 and 1 directional vanishing moment
Then the M-term NLA satisfies

1
1f — fcontourlet 12 ~ 2

Proof (very sketchy...):
- Amplitude of contourlets ~ 2-9/* and coeffs ~2-94 I3, |
- Three types of coefficients (significant which match direction insignificant
that overlap, and zero)

- levels 3J and J, respectively, leading to M ~ 23J/2

- squared error can be shown to be ~ 2-3
202 i
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original noisy

wavelet
13.8 dB

countourlets
15.4 dB




1. Introduction through History

2. Fourier and Wavelet Representations

3. Wavelets and Approximation Theory

4. Wavelets and Compression

5. Going to Two Dimensions: Non-Separable Constructions

7. Conclusions and Outlook
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Shit=linvariancerand viultireselution"Analysis

Most sampling results require shift-invariant subspaces
fOEV e ft—nT)EV ncZ

Wavelet constructions rely in addition on scale-invariance
f)eVoe f™)eVe,, meZ

Multiresolution analysis (Mallat, Meyer) gives a powerful framework.
Yet it requires a subspace structure.

Example: uniform or B-splines

) 600

\ /\ AL L
\

Question: can sampling be generalized beyond subspaces?

Note: Shannon BW sufficient, not necessary

[ ——— -~
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AVariation onra reme by Shannon

Shannon, BL case: f(t) = > f(nT)sinc(t/T — n) or 1/T degrees of
freedom per unit of time  neZz

But: a single discontinuity, and no more sampling theorem...

VS I @)

)
/] /\\Iﬂ\// _ F /\k

/ B L

t w

Are there other signals with finite number of degrees of freedom per unit
of time that allow exact sampling results?

=> Finite rate of innovation

Usual setup:

sampling kernel
z(t)

ot) YO KT wn

X(t): signal, (t): sampling kernel, y(t): filtering of x(t) and y,: samples




Aoy Example

K Diracs on the interval: 2K degrees of freedom. Periodic case:
(%)

RIRE Tz

v : 'T
j2rm(t—ty.)

z(t) = > Z cd(t—tp—n7t) = Z ck— d e 7

neZ k=0 T meZz
Key: The Fourier series is a weighted sum of K exponentlals

K-1
1 —Jj2mmty,
X[m] = ~ d e T
k=0

Result: Taking 2k+1 samples from a lowpass version of BW-(2K+1)
allows to perfectly recover x(t)

Method: Yule-Walker system, annihilating filter, Vandermonde system

Note: Relation to spectral estimation and ECC (Berlekamp-Massey)




ARepresentationrnecrem [ViVIET02]

For the class of periodic FRI signals which includes
e sequences of Diracs
* non-uniform or free knot splines
e piecewise polynomials

there exist sampling schemes with a sampling rate of the order of the rate
of innovation which allow perfect reconstruction at polynomial complexity

x(t) h(t) y(t), ¥y

Variations: finite length, 2D, local kernels etc
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Arlocal algerithmier FRI"'sampling

The return of Strang-Fix!

aoé(t—to) aoa(t—to)

a,8(t-t,)
a,8(t-t,)

_______________________________

. A
aob(t—to)

a, S(t-t 1)

0 t

Y0 n2yn = aotd + a1t3

local, polynomial complexity reconstruction, for diracs and piecewise
polynomials
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Conclusions

Wavelets and the French revolution
e too early to say?
e from smooth to piecewise smooth functions

Sparsity and the Art of Motorcycle Maintenance

e sparsity as a key feature with many applications -
e denoising, inverse problems, compression

LA versus NLA:
e approximation rates can be vastly different!

To first order, operational, high rate, D(R) _

e improvements still possible

e low rate analysis difficult
Two-dimensions:

e really harder! and none used in JPEG2000...

e approximation starts to be understood, compression mostly open
Beyond subspaces:

* FRI results on sampling, many open questions!

[ ——— -~
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OUtlook

Do we understand image representation/compression better?
e high rate, high resolution: there is promise
e low rate: room at the bottom?

New images
e plenoptic functions (set of all possible images)

 non BL images (FRI?)
e manifolds, structure of natural images

Distributed images

» interactive approximation/compression
e SW,W/Z, DKLT...

e T et — . 72 2005 T




WhyHimage Representation Remains arFascinatng ropic:::

A lone student standing
in front of four tanks.
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Thankyourioryouratienton!
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