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Richardson-Lucy Gaussian prior
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Our sparse prior
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Counter intuitive solution:

• Makes blur invariant to motion- can be removed with  
 spatially uniform deconvolution

 - kernel is known (no need to estimate motion)

 - kernel identical over the image (no need to segment)

• Makes blur easy to invert

To reduce motion blur, increase it!

 - move camera as picture is taken 



Inspiration: depth invariant defocus

• Wavefront coding - manipulate optical element

• Vary object/detector distance  during 
integration 

 
- Hausler 72   

- Nagahara, Kuthirummal, Zhou, Nayar 08

 

Cathey and Dowski 94



Motion invariant blur- disclaimers:

• Assumes 1D motion (e.g. horizontal)

• Degrades quality for static objects 



Controlling motion blur



Can we control motion blur?

Controlling motion blur



Controlling motion blur



Controlling motion blur



Controlling motion blur



Controlling motion blur

Motion invariant blur



Parabolic sweep

Sensor position x(t)=a t2

• Start by moving very fast to the right

• Continuously slow down until stop

• Continuously accelerate to the left

Intuition: 
                               
For any velocity, there is one instant 
where we track perfectly.

 

Sensor position x

Time t



Motion invariant blur



Motion invariant blur



Motion invariant blur



 Static camera

Unknown and 
variable blur kernels

Our parabolic input

Blur kernel is invariant 
to velocity

Our output after 
deblurring

NON-BLIND 
deconvolution





The space time volume

xyt- space-time volume

xt-slice

x

y

x

t

t



x

Solution: parabolic curve - shear invariant

x

Static object coordinates Moving object coordinates

Shearing:

Sheared parabola                     Shifted parabola 

t t



Assume: we could perfectly identify blur kernel 
 
Which camera has motion blur that is easy to invert?
      - Static? Flutter Shutter? Parabolic?

Prove: parabolic motion achieves near optimal information 
preservation

Deblurring and information loss

blurred input deblurred static input 



Frequencies 
from possible 

motions

Bounded velocities range=>                                                        need to 
preserve a double wedge in the frequency domain

Space-time Fourier domain

 Primal Domain

t

x

Frequency Domain

t

x

Velocity 2

Velocity 1

Static

Camera 
integration 

curve

Objects



Static object: high response
Higher velocities: low

Static camera

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Velocity 2

Velocity 1

Static

Camera 
integration 

curve

Vertical integration segment

 Primal Domain

t

x

Frequency Domain

Objects



Higher velocities: 
better than static camera

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Vertical but discontinuous 
integration segment

Flutter shutter (Raskar et al 2006)

Velocity 2

Velocity 1

Static

 Primal Domain

t

x

Frequency Domain

Objects



Static camera

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Static object: high response
Higher velocities: low

Vertical integration segment

Velocity 2

Velocity 1

Static

 Primal Domain

t

x

Frequency Domain

Objects



Flutter shutter (Raskar et al 2006)

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Higher velocities: 
better than static camera

Vertical but discontinuous 
integration segment

Velocity 2

Velocity 1

Static

 Primal Domain

t

x

Frequency Domain

Objects



Equal high response in all range

Our parabolic camera

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Parabola

Velocity 2

Velocity 1

Static

 Primal Domain

t

x

Frequency Domain

Objects



Flutter shutter (Raskar et al 2006)

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Higher velocities: 
better than static camera

Vertical but discontinuous 
integration segment

Velocity 2

Velocity 1

Static

 Primal Domain

t

x

Frequency Domain

Objects



Equal high response in all range

Our parabolic camera

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Parabola

Velocity 2

Velocity 1

Static

 Primal Domain

t

x

Frequency Domain

Objects



Bounded budget per column
(norm of power spectrum)

Information budget

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Bounded number 
of photons

?

 Primal Domain

t

x

Frequency Domain

Objects



For each column, distribute budget 
uniformly within wedge  nnnnnnnn

Upper bound given velocity range

 Primal Domain

t

x

Frequency Domain

t

x

Objects

Camera 
integration 

curve

Frequencies 
from possible 

motions

?

 Primal Domain

t

x

Frequency Domain

Objects
Frequencies 

from possible
motions



slo
pe w

edge

slo
pe w

edge

slo
pe w

edge

slo
pe w

edge

Cameras and information preservation

Static Flutter shutter Parabolic Upper bound

slo
pe w

edge

slo

gege

Bounded 
“budget” per 
column

Constant horizontally

Spends frequency 
“budget” outside 
wedge 

Handles 2D motion

Near optimal 
“budget” usage at 
all frequencies 



Comparing camera reconstruction

Note: synthetic rendering, exact PSF is known

Static Flutter Shutter Parabolic 

Blurred 
input 

Deblurred 
output 





Hardware construction

• Ideally move sensor                                                         
 (requires same hardware as existing stabilization systems)

• In prototype implementation: rotate camera 

variable 
radius  
cam

Rotating 
platform

Lever



Linear rail

Our parabolic input-                   Blur 
is invariant to velocity

Static camera input-
Unknown and variable blur



Linear rail

Static camera input-
Unknown and variable blur

Our output after deblurring-        
NON-BLIND deconvolution 



Input from a static camera Deblurred output from our camera 

Human motion- no perfect linearity



Violating 1D motion assumption- forward motion

Input from a static camera Deblurred output from our camera 



Violating 1D motion assumption- stand-up 
motion

Input from a static camera Deblurred output from our camera 



Violating 1D motion assumption- rotation

Input from a static camera Deblurred output from our camera 



Parabolic curve – issues

• Spatial shift- but does not affect visual quality in deconvolution

• Parabola tail clipping: not exactly the same blur

• Motion boundaries break the convolution model

• Assumes: Object motion horizontal

                     Object motion linear up to 1st order approximation



Conclusions

Acknowledgments: 
NSF CAREER award 0447561 
Royal Dutch/Shell Group      NGA 
NEGI-1582-04-0004
Office of Naval Research MURI
MSR New Faculty Fellowship                              
Sloan Fellowship

x

t

xt-slice

• Camera moved during exposure, parabolic displacement 

• Blur invariant to motion:
 - Same over all image (no need to segment)
 - Known in advance (no kernel identification)

• Easy to invert (near optimal frequency response)

• For 1D motion
   - Somewhat robust to 1D motion violation
   - Future work: 2D extensions
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 Understanding camera trade-o�s 
through a Bayesian analysis of light 

field projections 

Anat Levin1, Bill Freeman1,2, Fredo Durand1

Computer Science and Artificial Intelligence Lab (CSAIL),

1Massachusetts Institute of Technology

and  2Adobe Systems



Cameras, old and new

Traditional camera:  Lens forms final 2D image

Computational camera:  Recorded data is not the final output.

 
• Visual array estimated from sensor measurements.
• Extra design degree of freedom.

Beyond 2D images--acquisition of light field or depth.
Post-exposure re-synthesis of image.



• Best way to capture image and depth: Stereo? Plenoptic camera? 
Coded aperture? or...?

• What aspects of these cameras contribute to their performance? 

• Can we design new cameras with improved reconstruction 
performance?

An explosion of cameras

Conventional single-
lens cameras Stereo and 

trinocular cameras

Coded aperture

Plenoptic 
cameras

Wavefront 
coding



Camera evaluation, old and new

Traditional optics evaluation:  

2D image sharpness (eg, Modulation Transfer 
Function)

contrast vs. spatial frequency

Our modern camera evaluation:

How well does the recorded data allow us to 
estimate the visual world - the lightfield?

lightfield reconstruction



•Characteristics of the signal to be estimated.

•Projection functions of various cameras.

•Bayesian lightfield analysis

–Reconstructing the lightfield from camera data.

–Comparing performance tradeoffs of different 

cameras.

Computational photography camera evaluation:

an estimation problem

so let’s talk about lightfields and cameras



What does a camera sensor element record?

camera 
optics

Sensor element

Some linear 

combination 

of lightrays.



yi   =
datum

Ti
The camera

4D->2D linear projection

x  

The lightfield

(4D)

Sensor element data

noise

+  ni



x   +  ny   = T

camera data The camera

4D->2D linear projection

The lightfield

(4D)

noise

Camera:  all-positive linear projection of a 4D lightfield

What is a camera?



A more revealing parameterization of 
the lightfield

Light field: parameterization of the 4D 
space of light rays in the world

Provides a convenient way to model 
different lenses and cameras designs                  



hello 7

d
e
p

th

horizontal position

Lightfield tutorial

flatworld 1D scene 2D lightfield

a

b

2 plane parameterization [Levoy and Hanrahan 96]

b plane

a plane

aa

b



hello 8

d
e
p

th

horizontal position

flatworld 1D scene 2D lightfield

a

b

Lightfield tutorial

2 plane parameterization [Levoy and Hanrahan 96]

b plane

a plane

aa

b



hello 9

flatworld 1D scene 2D lightfield

a

bd
e
p

th

horizontal position

Lightfield tutorial

2 plane parameterization [Levoy and Hanrahan 96]

b plane

a plane

a

b



hello 10

Pinhole camera

flatworld 1D scene 2D lightfield

d
e
p

th

horizontal position a

b

sensor plane

aperture

y = T x

b plane

a plane

a

b



hello 11

d
e
p

th

horizontal position

sensor plane

aperture

Lens, focused at green object

flatworld 1D scene 2D lightfield

a

b

y = T x

b plane

a plane

a

b



hello 12

d
e
p

th

horizontal position

sensor plane

aperture

Lens, focused at blue object

flatworld 1D scene 2D lightfield

a

b

b plane

a plane

a

b



hello 14

d
e
p

th

horizontal position

apertures

Stereo

flatworld 1D scene 2D lightfield

a

b

sensor plane

b plane

a plane

a

b



hello 15

Plenoptic camera

flatworld 1D scene 2D lightfield

a

bd
e
p

th

horizontal position

sensor plane

aperture

Adelson and Wang 92, Ng et al 05

b plane

a plane

a

b

micro-lenses

main lens



hello 16

d
e
p

th

horizontal position

sensor plane

aperture

Wavefront coding

flatworld 1D scene 2D lightfield

a

b

Dowski and Cathey,94

b plane

a plane

a

b

cubic phase plate



y= T x   +  n

data camera

lightfield

noise

Computational imaging

Camera: Rank deficient projection of a 4D lightfield.

Decoding:  ill-posed inversion, need prior on lightfield signals.

Camera evaluation: How well can recover the lightfield from projection?

y = Tx + n



Varying imaging goals by weighted lightfield 
reconstruction

• Full light field reconstruction (potentially image&depth)

• Reconstruct a bounded view range

• Single row light field reconstruction (pinhole all focused image) 
      

b

a

Weigh reconstruction 
error differently in 
different light field 

entries 

b

a



• Specify lightfield reconstruction goals

• Full lightfield / Single, all-focus view /…

• Specify lightfield prior 

• Imaging with one computational camera

• Specify camera projection matrix

• Camera decoding - Bayesian inference

• Comparing computational cameras

• Specify camera projection matrices

• Evaluate expected error in lightfield reconstruction

     

Bayesian lightfield imaging - Outline



• Specify lightfield reconstruction goals

• Full lightfield / Single, all-focus view /…

• Specify lightfield prior 

• Imaging with one computational camera

• Specify camera projection matrix

• Camera decoding - Bayesian inference

• Comparing computational cameras

• Specify camera projection matrices

• Evaluate expected error in lightfield reconstruction

     

Bayesian lightfield imaging - Outline



Our light field prior: 
a mixture of signals at di�erent slopes

Hidden variable S modeling local slope 

Conditioning on slope:  

small variance along slope direction  

high variance along spatial direction

Piecewise smooth 

prior on slopes

Given slope, lightfield 

prior is Gaussian and 

simple

Light field prior is a mixture of oriented Gaussians (MOG):



• Specify lightfield reconstruction goals

• Full lightfield / Single, all-focus view /…

• Specify lightfield prior 

•Imaging with one computational camera

• Specify camera projection matrix

• Camera decoding - Bayesian inference

• Comparing computational cameras

• Specify camera projection matrices

• Evaluate expected error in lightfield reconstruction

     

Bayesian lightfield imaging - Outline



Reconstruction using light field prior

Prior e�ect on reconstruction

Band-limited reconstruction to account for unknown depth

See paper for 
inference details



• Specify lightfield reconstruction goals

• Full lightfield / Single, all-focus view /…

• Specify lightfield prior 

•Imaging with one computational camera

• Specify camera projection matrix

• Camera decoding - Bayesian inference

• Comparing computational cameras

• Specify camera projection matrices

• Evaluate expected error in lightfield reconstruction

     

Bayesian lightfield imaging - Outline



Camera evaluation

Posterior probability  
P(x|y, T) 

lightfield given data, camera, 

and prior
  

bad camera

good camera

Lightfield, x
(schematic picture of the very 
high-dimensional vector)

true lightfield, x0

Goal: evaluate inherent ambiguity of a camera projection, 
independent of inference algorithm 



Camera evaluation function:  
expected squared error

With our mixture model prior, conditioned on the lightfield slopes S, 
everything is Gaussian and analytic.  So let’s write the posterior as:

Then our expected squared error becomes an integral over all slope fields:

Approximate by Monte Carlo sampling near the true slope field:



Bayesian camera evaluation tool

Matlab software online:

people.csail.mit.edu/alevin/papers/lightfields-Code-Levin-Freeman-
Durand-08.zip

Input parameters:

• Reconstruction goals (weight on light field entries)

• Camera matrix

• Noise level

• Spatial and depth resolution

Output: expected reconstruction error



1D camera evaluation- full light field 
reconstruction

expected 
lightfield 

estimation 
error

Observation:

As expected, a pinhole camera doesn’t estimate the lightfield well



Observation:

When depth variation is limited, some depth from defocus exist in a single 
monocular view from a standard lens

1D camera evaluation- full light field 
reconstruction

expected 
lightfield 

estimation 
error



1D camera evaluation- full light field 
reconstruction

expected 
lightfield 

estimation 
error

Observation:

Wavefront coding, not designed to estimate the lightfield, doesn’t.



1D camera evaluation- full light field 
reconstruction

expected 
lightfield 

estimation 
error

Observation:

Depth-from-defocus (DFD) outperforms the coded aperture at these settings



1D camera evaluation- full light field 
reconstruction

Observation: Stereo error is less than Plenoptic

Since depth variation is smaller than texture variation, no need to sacrifice so 
much spatial resolution to capture directional information

expected 
lightfield 

estimation 
error



33

Observations: 

Pinhole camera- poor estimation due to noise

Wavefront coding- no depth information, but accurate reconst for a single view

1D camera evaluation- single row reconstruction

b

a

b

expected 
lightfield 

estimation 
error



speed-invariant blur allows non-blind deconvolution

Application: motion invariant photography

a

b

Time

Space

 Static camera motion invariant  output after 

Depth invariant integration

 Motion invariant integration

SIGGRAPH 2008, Levin et al.



Summary:  Bayesian lightfield imaging

• Model imaging as linear light field 
projection

• New prior on light field signals

• Camera decoding expressed as a Bayesian 
inference problem 

• Framework and software for comparison 
across camera configurations, by evaluating 
uncertainty in light field reconstruction

• Principled novel camera design

y = T x
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full lightfield reconstruction, unclipped plot

Full lightfield
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single-row reconstruction, unclipped plot

single row
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