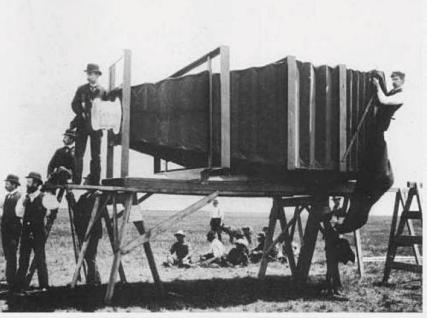
Computation is the New Optics: Coded Imaging in Computational Photography

Frédo Durand MIT CSAIL

Traditional imaging

- Optics forms the image
- Sensor/film just record
- Displayed image is pretty much the optical image

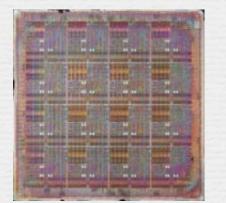
This is the same for digital camera
post-processing is limited



Computational Photography

- Computation between optical and displayed image
 - The optical image is not the final product
 - Can be modified heavily
- + Goals:
 - Alleviate physical limitation
 - Capture more information (e.g. depth)
- Best to design computation and optics together

Generalized imaging



Lots of computation

Final image

Related fields

- Computer graphics
 - Try to reproduce reality
- Computer Vision
 - Extract information from visual array
- Image Processing
- Computational Imaging
- ✤ Astronomy/telescope
- ✤ Radar
- MicroscopyMedical Imaging

for Eugene

Big ideas in Comp. Photo.

+ Goals:

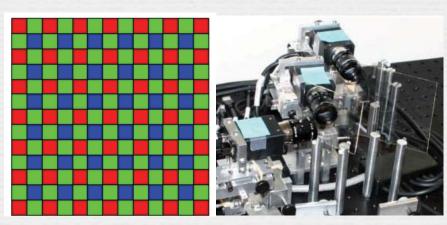
- Beat physics, better image quality/quantity
- More data (depth, etc.)
- Seeing the unseen
- Creative choices during post-process
- New visual media
- Multiple-exposure imaging & multiplexing
- Coded imaging
- Prior information
- The raw data is high dimensional
- Active imaging

Multiple-exposure & multiplexing

- Expand capabilities by combining multiple images
- Multiplex through time, assorted pixels, beam splitters, camera array

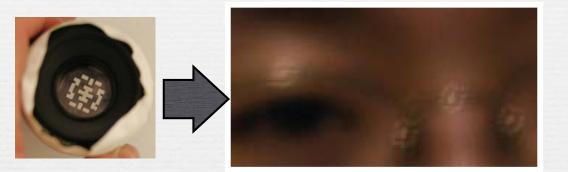
+ e.g.

- Panorama stitching
- High-dynamic-range imaging
- Focus stacks
- Photomontage
- Super-resolution

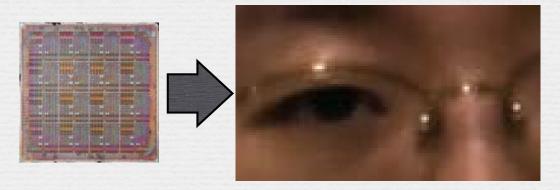


Coded Imaging

Optics encodes information



Computation decodes

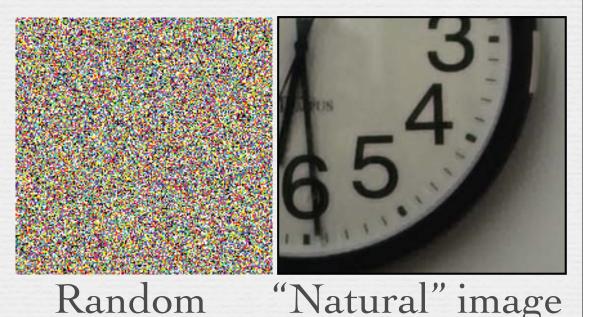


♦ e.g.

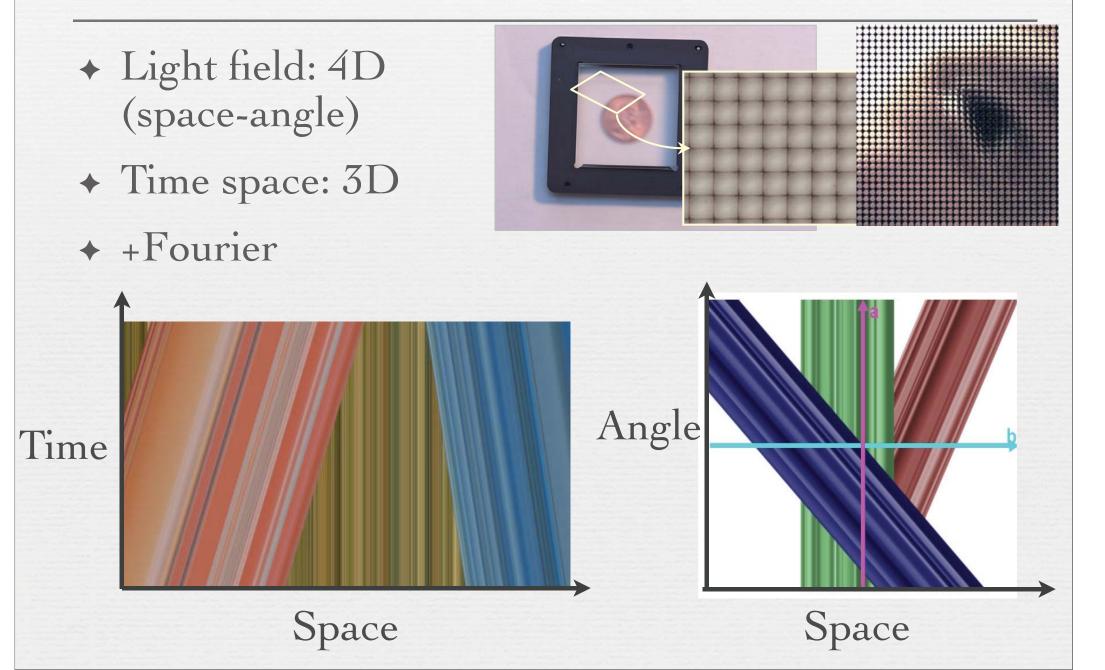
- wavefront coding
- coded aperture
- flutter shutter
- motion-invariant
- compressive sensing
- heterodyning
- warp-unwarp

Natural signal prior

- Statistics that distinguish images of the world from random signals
- Use to "bias" algorithms to output more likely results or to disambiguate ill-posed problems
- Extension of regularization
- ◆ e.g.
 - Denoising
 - Deconvolution
 - Compressive sensing
 - Light field prior



The raw data is high dimensional

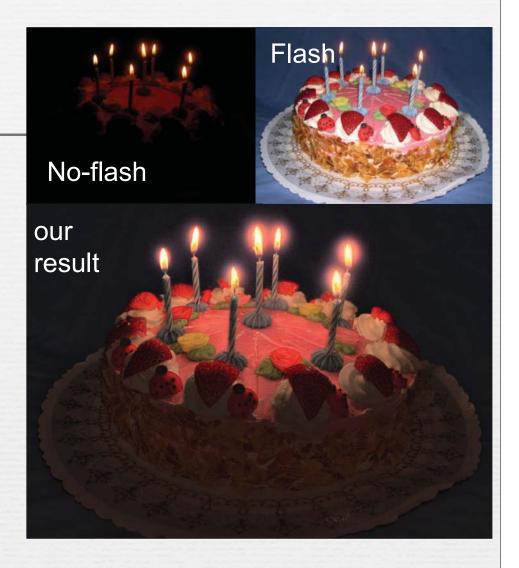


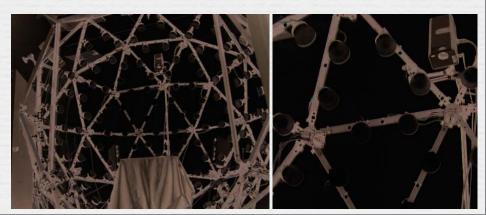
Active imaging

 Modulate light to facilitate information gathering

★ e.g.

- Flash/no flash
- Light stages
- Dual imaging
- Structured-light scanning





Recap: Big ideas in Comp. Photo.

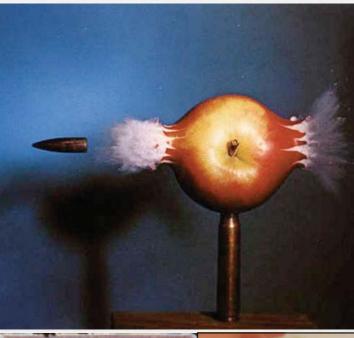
 Multiple-exposure & multiplexing + Coded imaging Prior information The raw data is high dimensional Active imaging

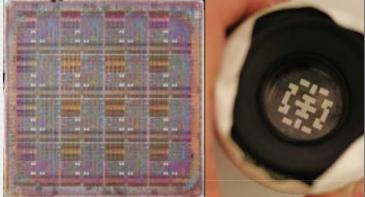
Computational Photography: Coded Blur Removal

Frédo Durand MIT CSAIL with Anat Levin, Peter Sand, Rob Fergus, Taeg Sang Cho, Bill Freeman

This talk: blur removal

- Blur often reduces image quality
 - Motion blur, diffraction, defocus
- Traditional solution:
 - Faster shutter speed, smaller aperture, bigger aperture
 - Often increases noise (gathers less light)
- Today: computational solution
 Remove blur given single image
 Imaging hardware + software





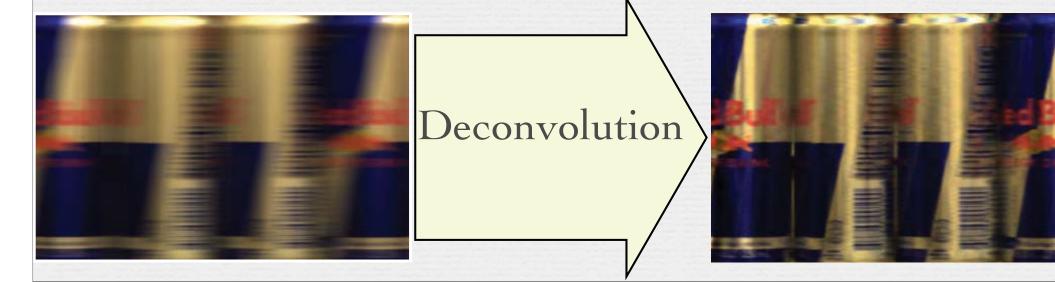
Motion blur

Most of the scene is static

red bull is moving from left to right

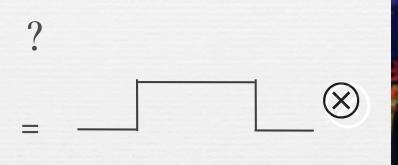
Can we remove the blur?

- Given single image with blur
- Blur is mostly a linear process, just invert it
 called deconvolution
- But we need to know the exact blur
- But the process needs to be invertible
 Lose as little information as possible

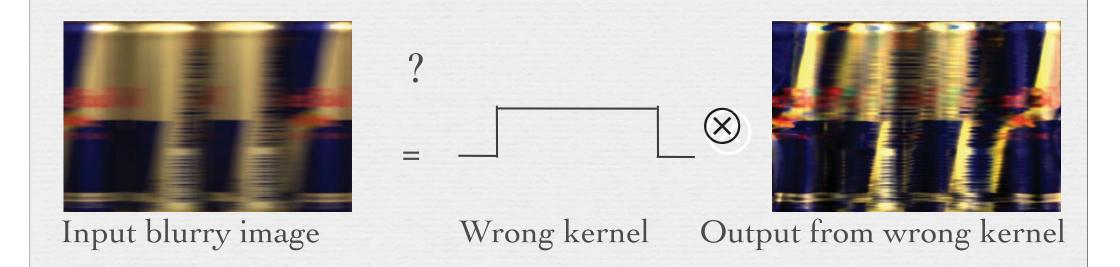


Kernel identification

Input blurry image



Correct kernel Output from correct kernel



Kernel identification

The kernel is spatially varying

Entire image deblurred with kernel corresponding to the cans' velocity

Challenge with deblurring

Blur destroys information Often box filter

Deblurring given known blur:

blurred input

deblurred

static input

Challenge with DoF and motion

Blur destroys information
Often box filter

Kernel identification
Spatially varying

This talk: two opposite solutions

Make blur very variant
Easier to identify

Make blur invariant
No need to identify

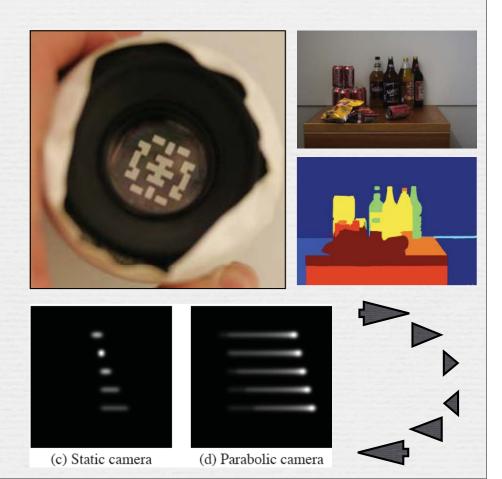
In both cases, we also make the blur easy to invert Preserve information

Outline

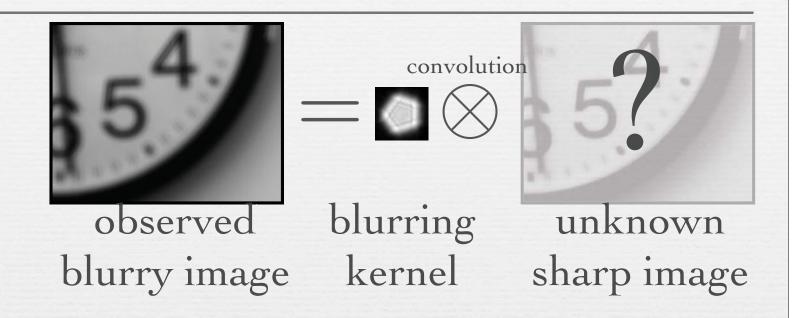
 Natural image prior: help the inversion

 Coded aperture: make blur vary more with depth

 Motion-invariant photography



Deconvolution with known kernel



 Given blurred image and blurring kernel infer sharp image

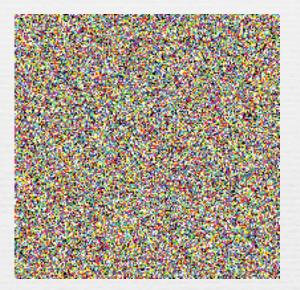
Deconvolution challenge

Traditional algorithms lead to ringing

Richardson-Lucy deconvolution

Idea 1: Natural image prior

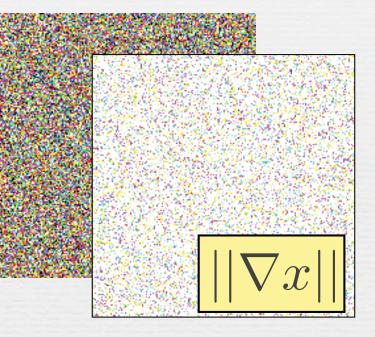
 Random 2D arrays of colors don't look like the world around us



If we can characterize natural images,
 we can bias algorithms to output better results

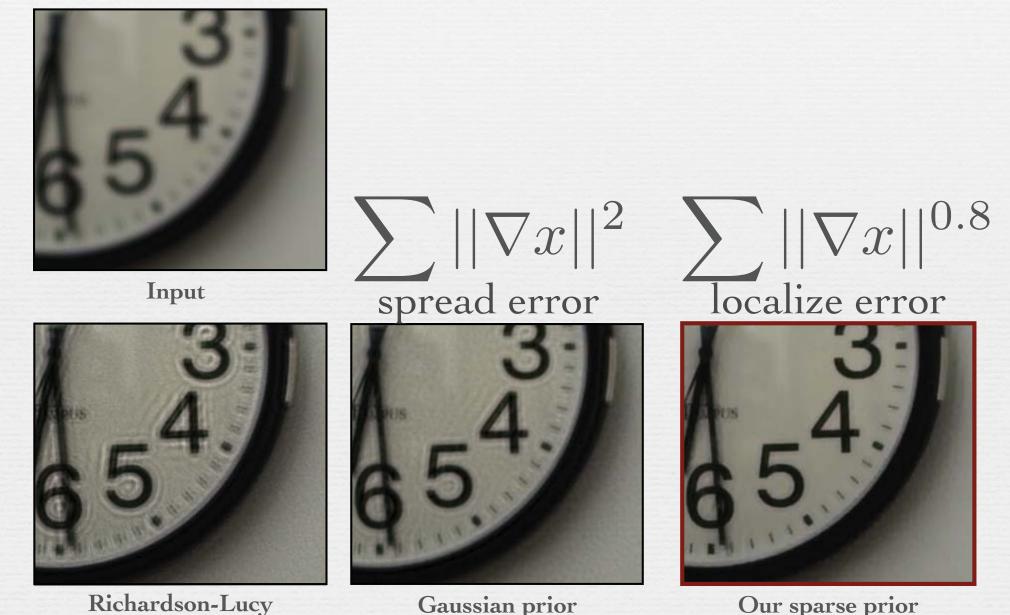
Sparse derivatives prior

 Natural images have sparse derivative (the gradient is small almost everywhere)



+ Add an optimization term $\sum ||\nabla x||^{0.8}$ (a.k.a. regularization) Pay penalty where gradient is non-zero

Sparsity prior for deconvolution



Gaussian prior

Our sparse prior

Big ideas in Comp Photo

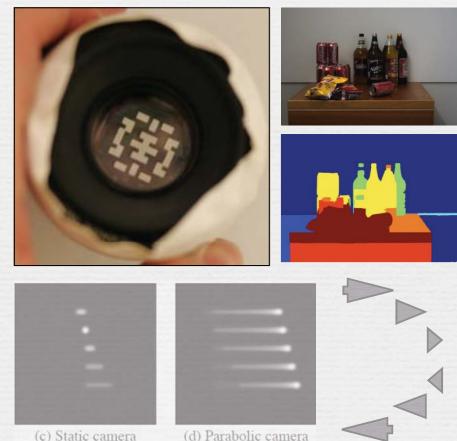
 Multiple-exposure & multiplexing Coded imaging + Prior information The raw data is high dimensional Active imaging

Outline

Natural image prior: help inversion

+ Coded aperture: make blur vary more with depth

 Motion-invariant photography

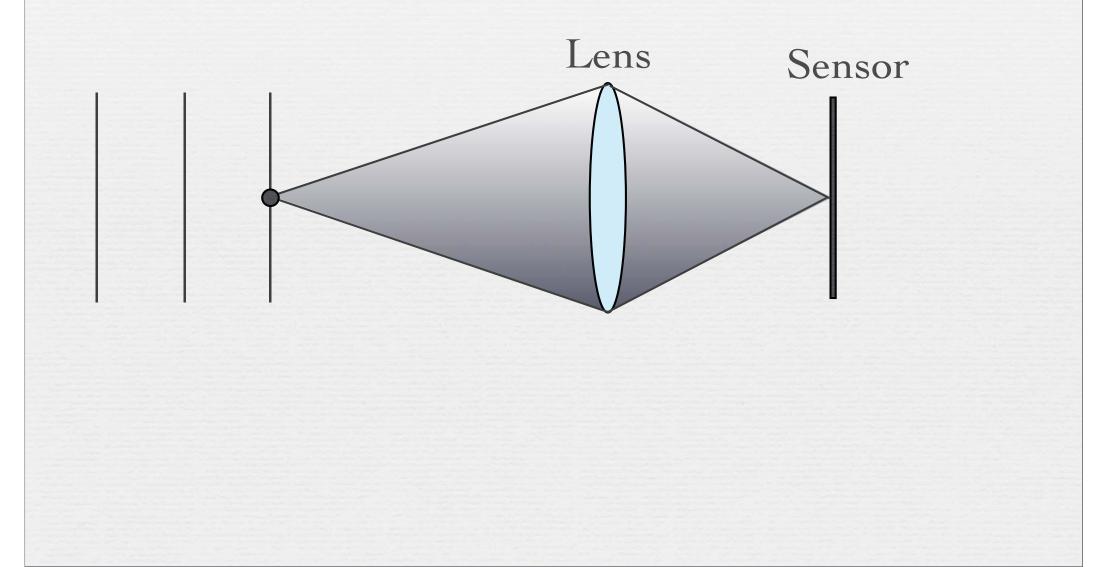


(c) Static camera

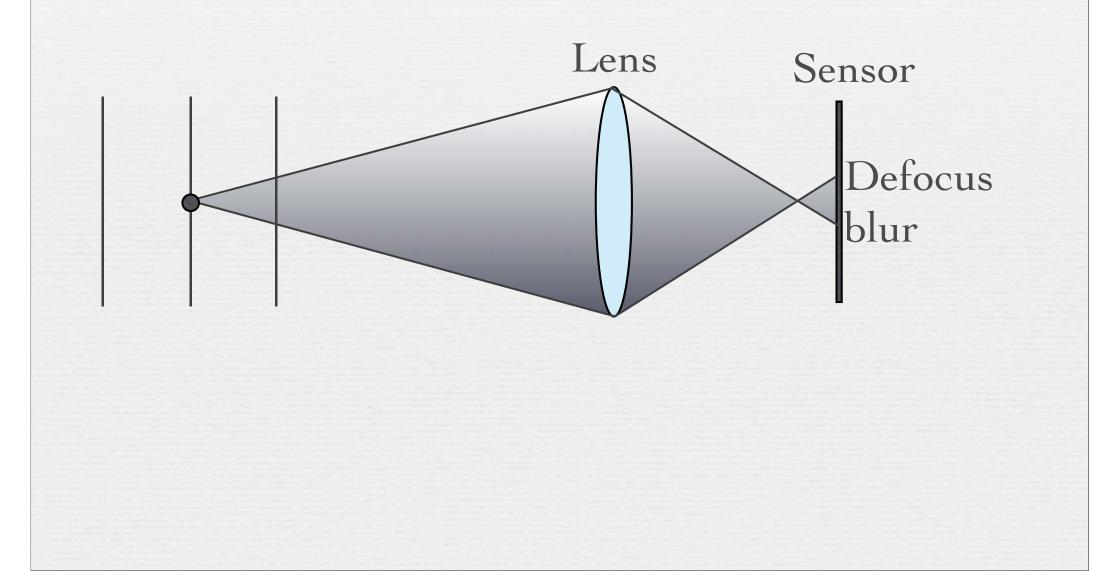
Image and Depth from a Conventional Camera with a Coded Aperture

With Anat Levin, Rob Fergus, Bill Freeman [Siggraph 2007] RGB & coarse depth from single image

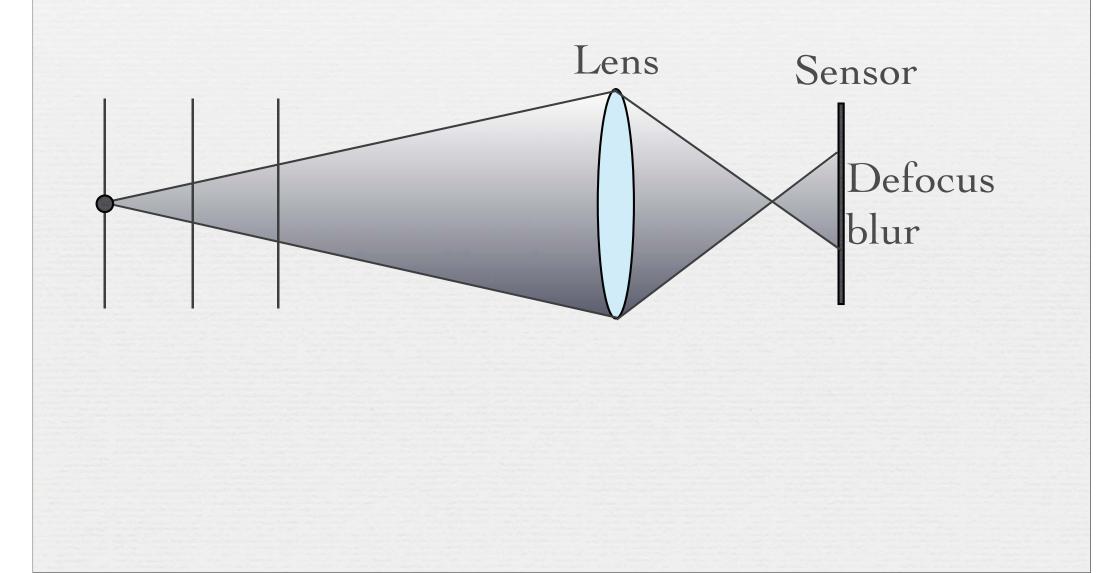
Objects at focusing distance are sharp



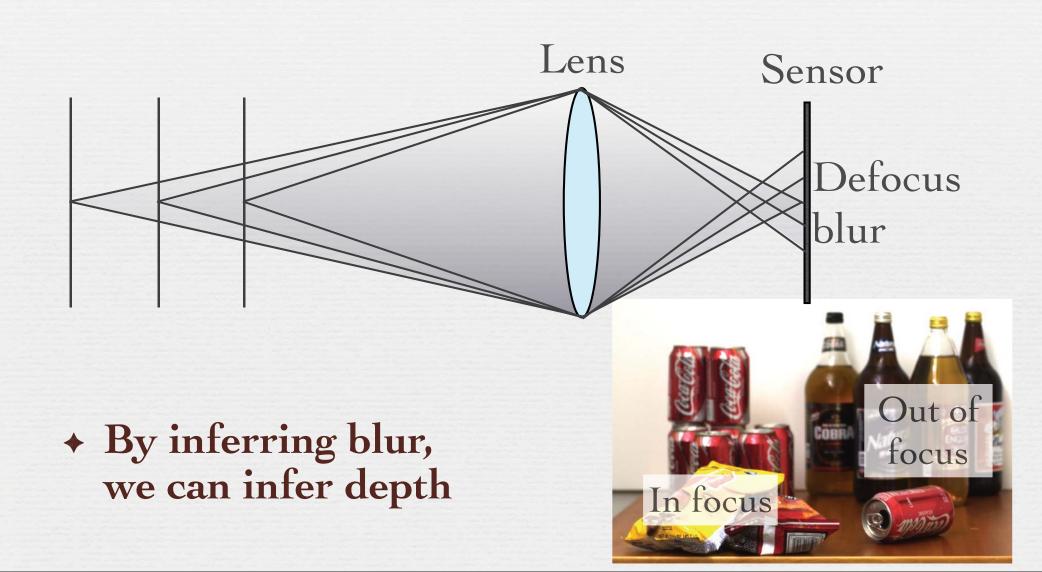
Objects far from focusing distance are blurrier

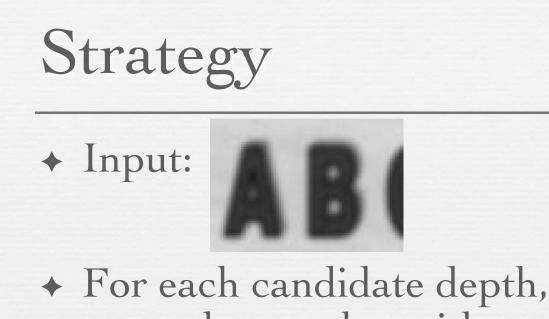


Objects far from focusing distance are blurrier

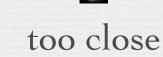


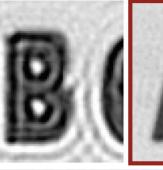
Objects far from focusing distance are blurrier

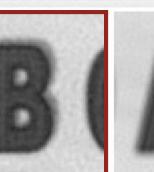


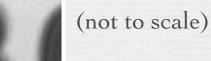


For each candidate depth, try to deconvolve with corresponding kernel









For each pixel, keep best kernel/depth

Challenge: hard to infer depth

 For each candidate depth, try to deconvolve with corresponding kernel

. . .

(not to scale)

* "Too close" not so different from "correct"

Solution: Coded aperture

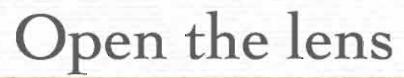
 Put a mask (code) on aperture plane (diaphragm) ➡ more structured blur ⇒ easier to identify kernel/depth ⇒ easier to remove blur

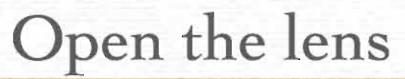
Coded

Build your own coded aperture

Some Th

wwzso

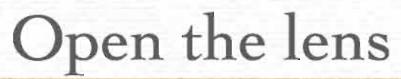


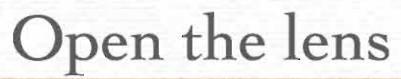


Open the lens

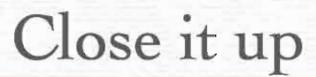
Open the lens

Open the lens

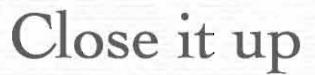


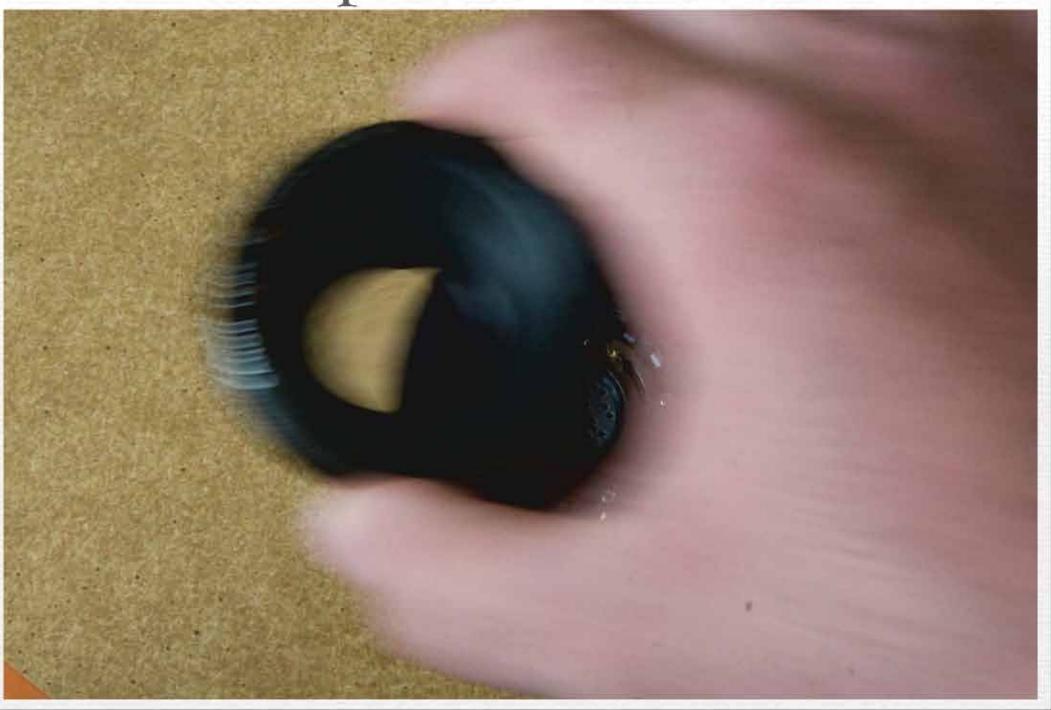


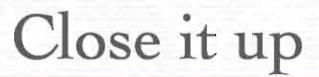
Now the critical part



Close it up





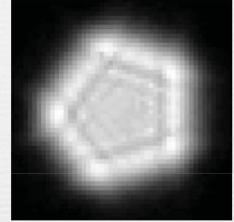


Traditional aperture defocus

Shape of mask scaled according to depth

Conventional

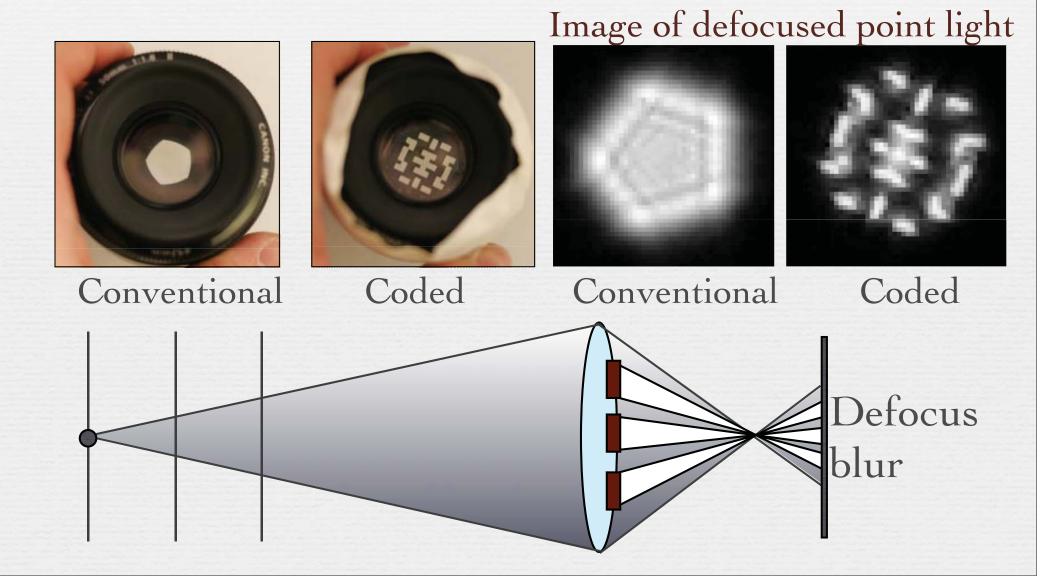
Image of defocused point light

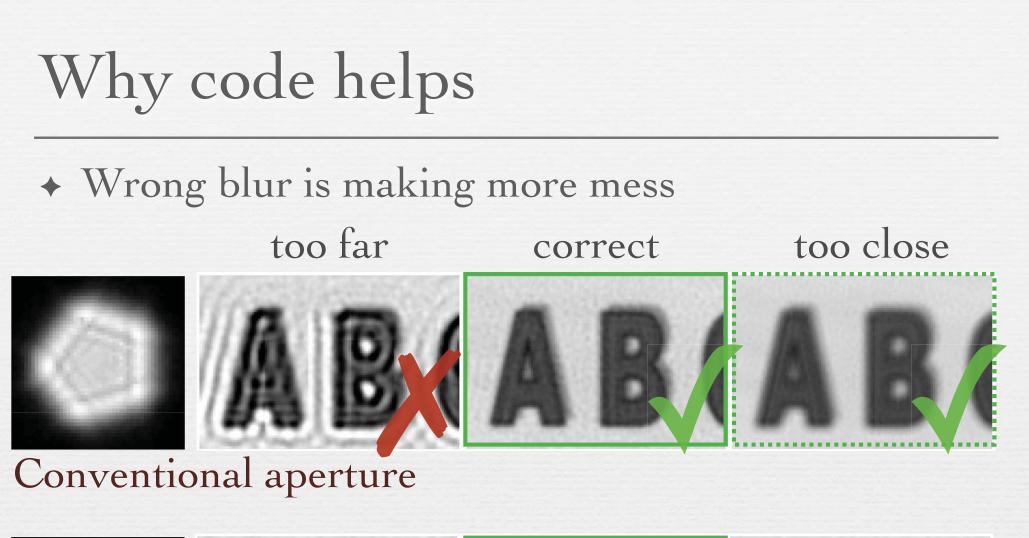


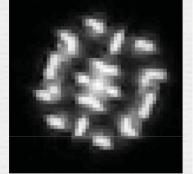
Conventional Defocus blur

Coded aperture defocus

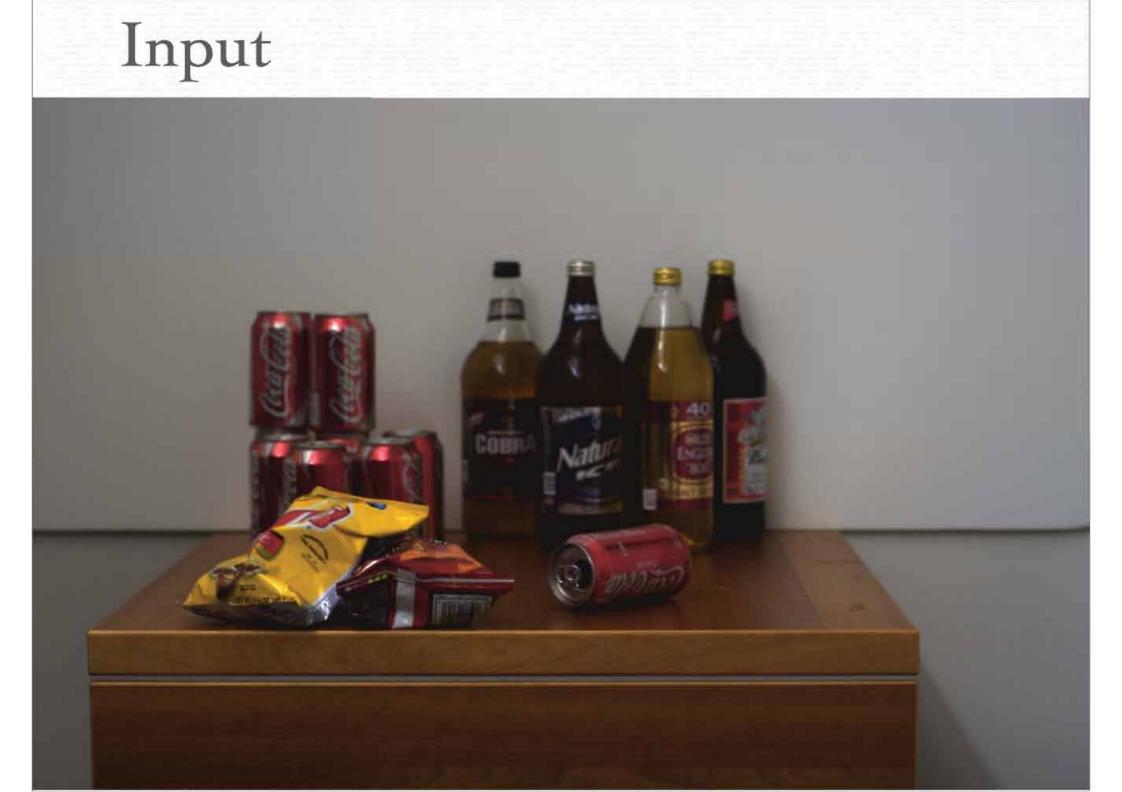
Shape of mask scaled according to depth



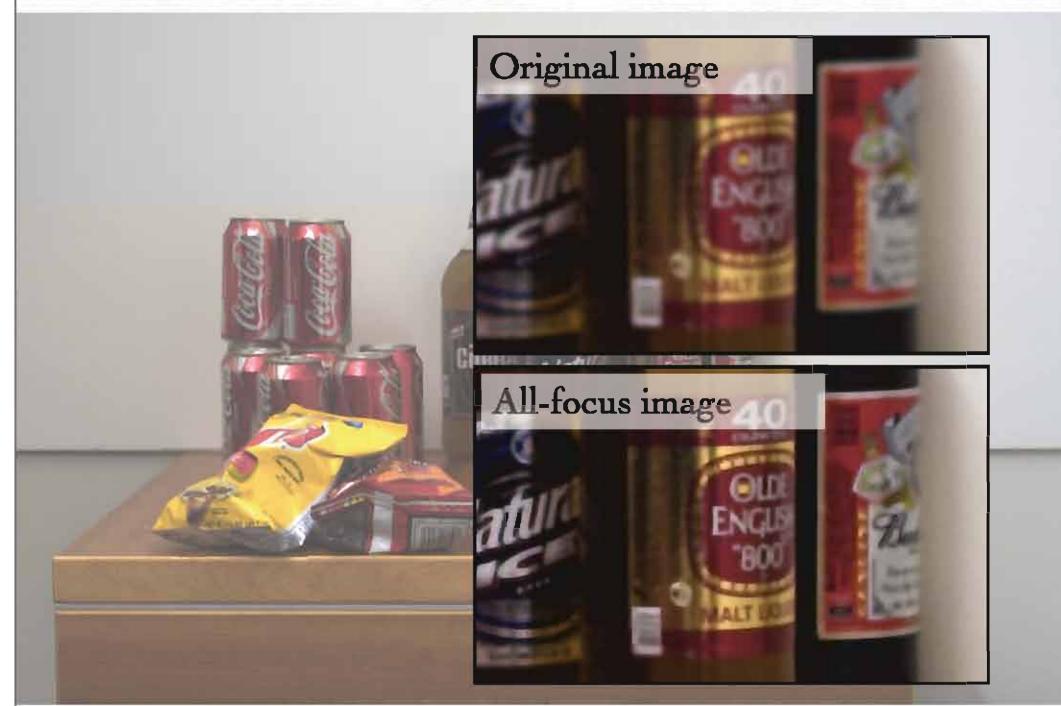


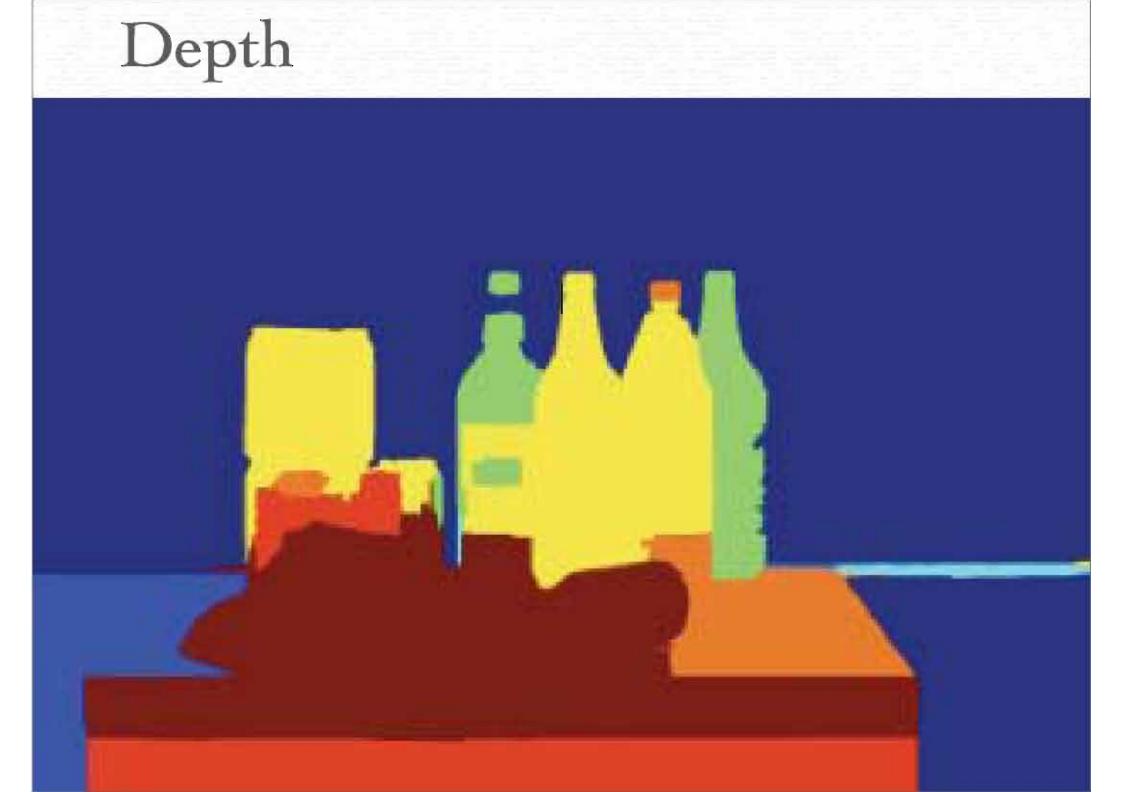


Coded aperture

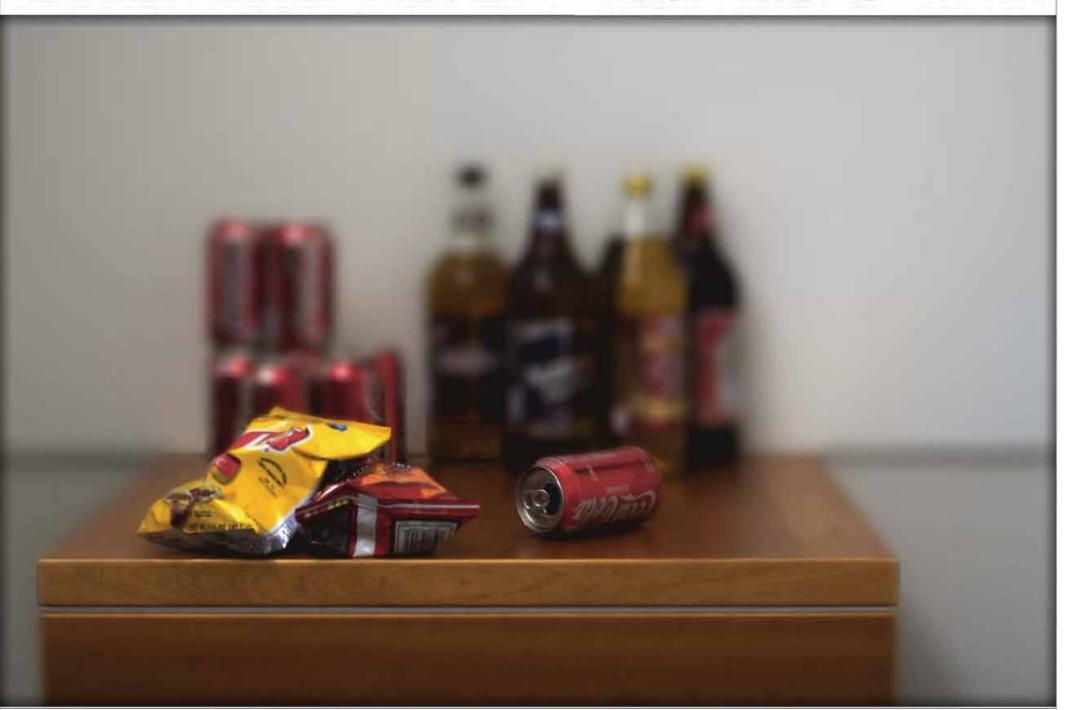


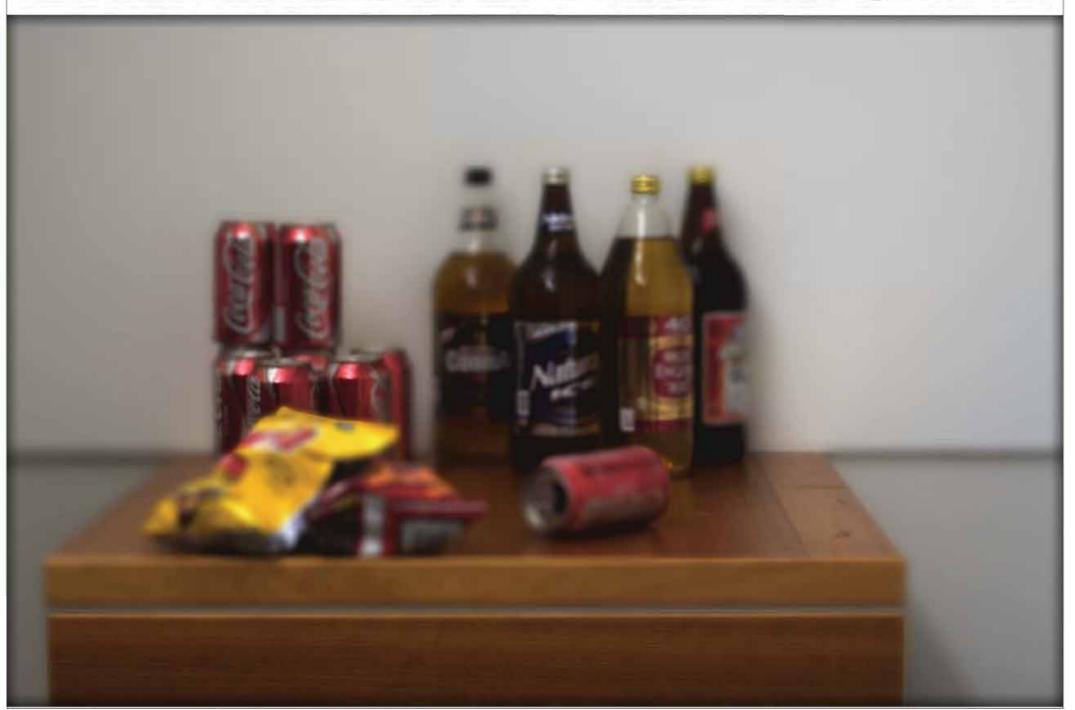
Deconvolved (all-focus)

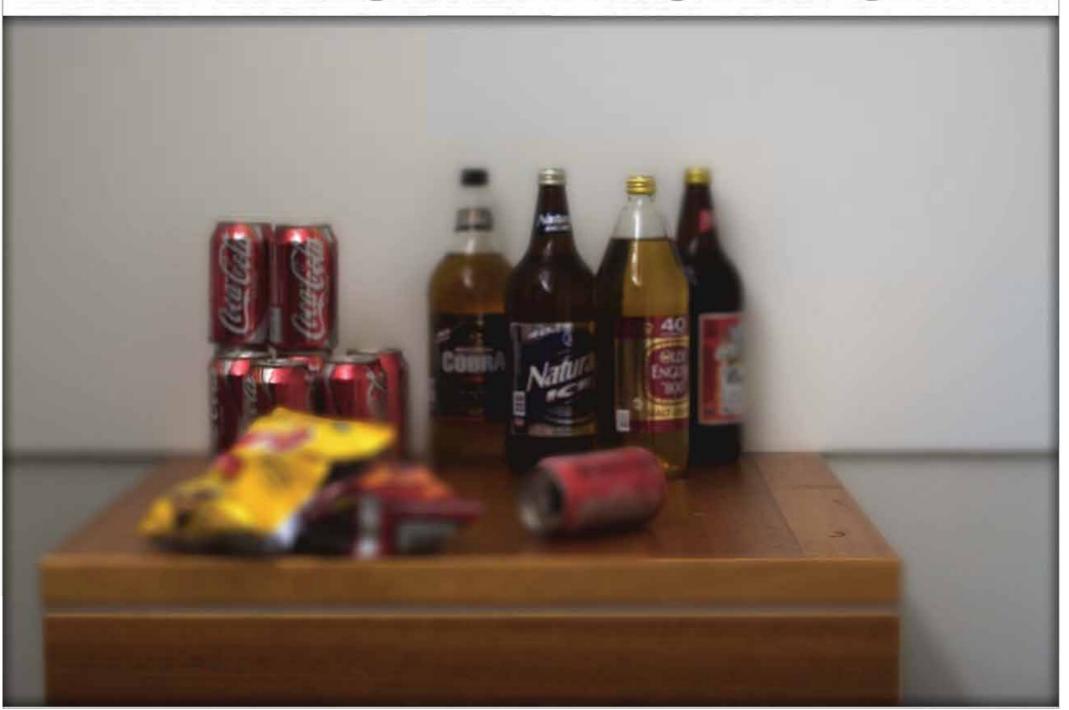


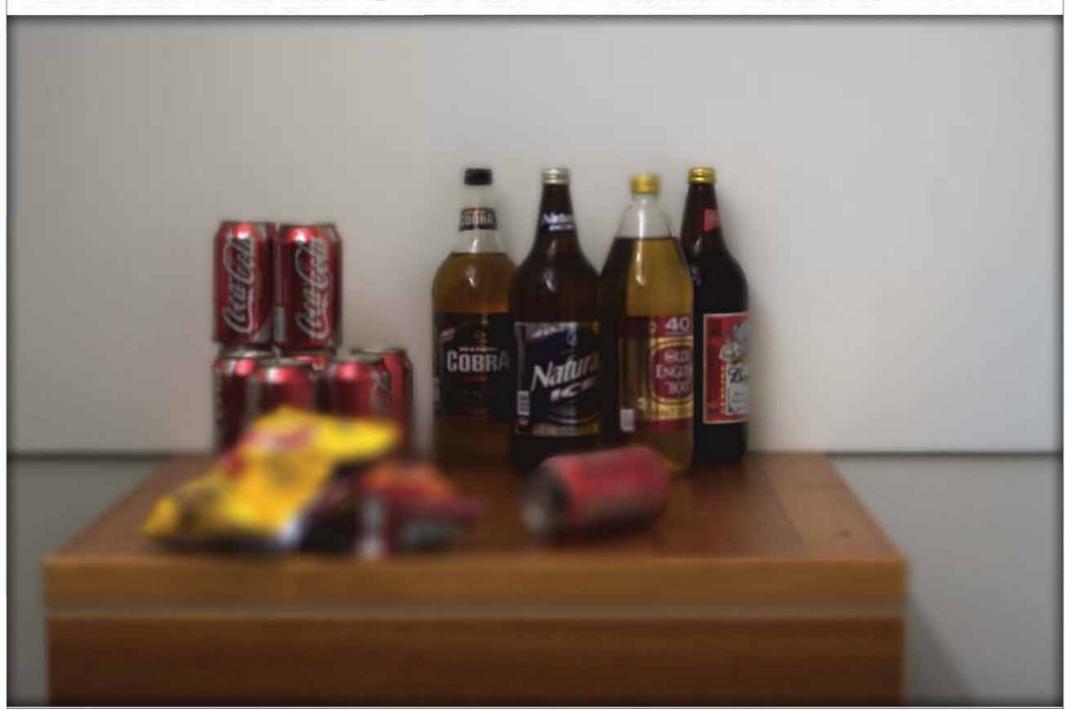


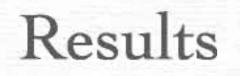
Deconvolved (all-focus)

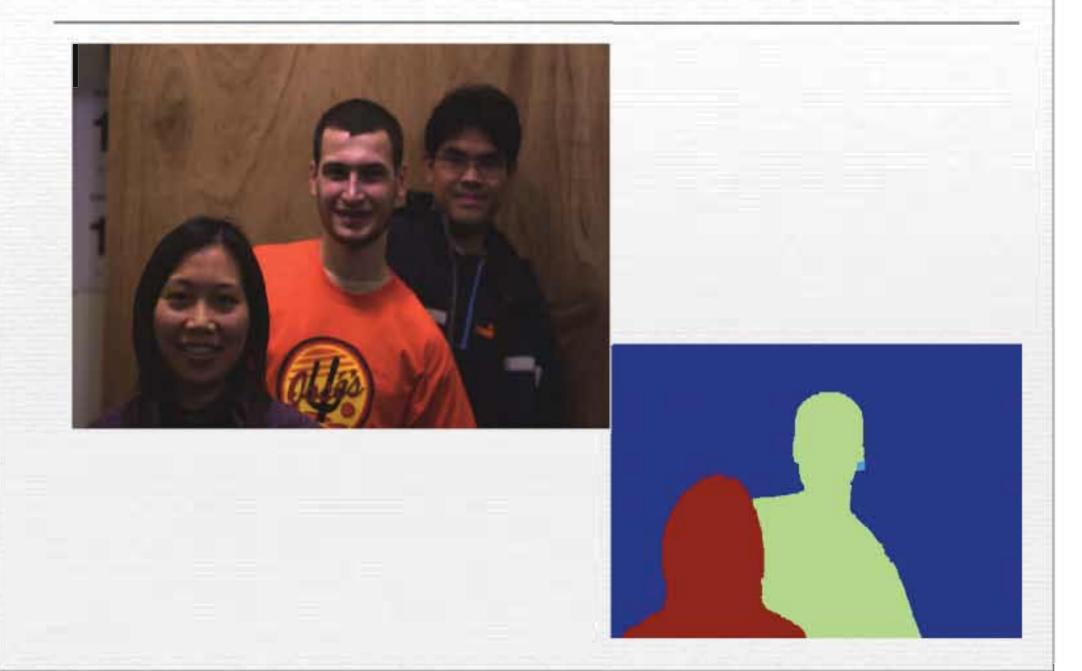


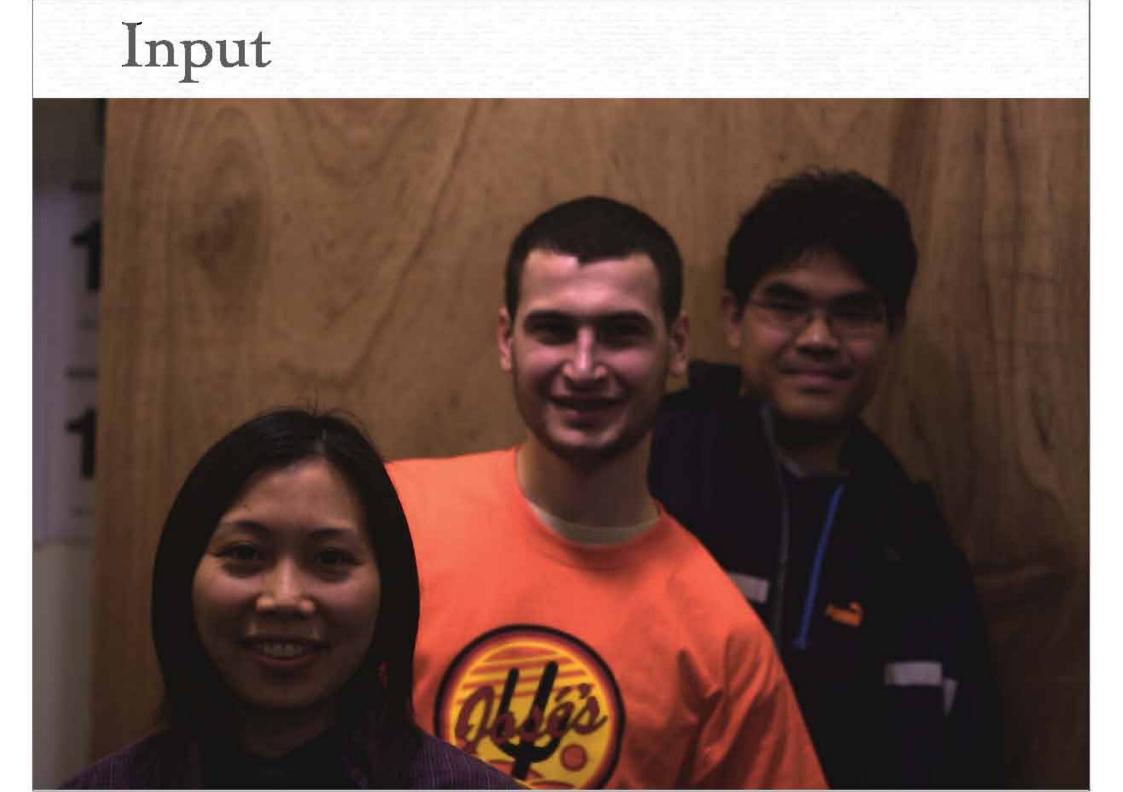




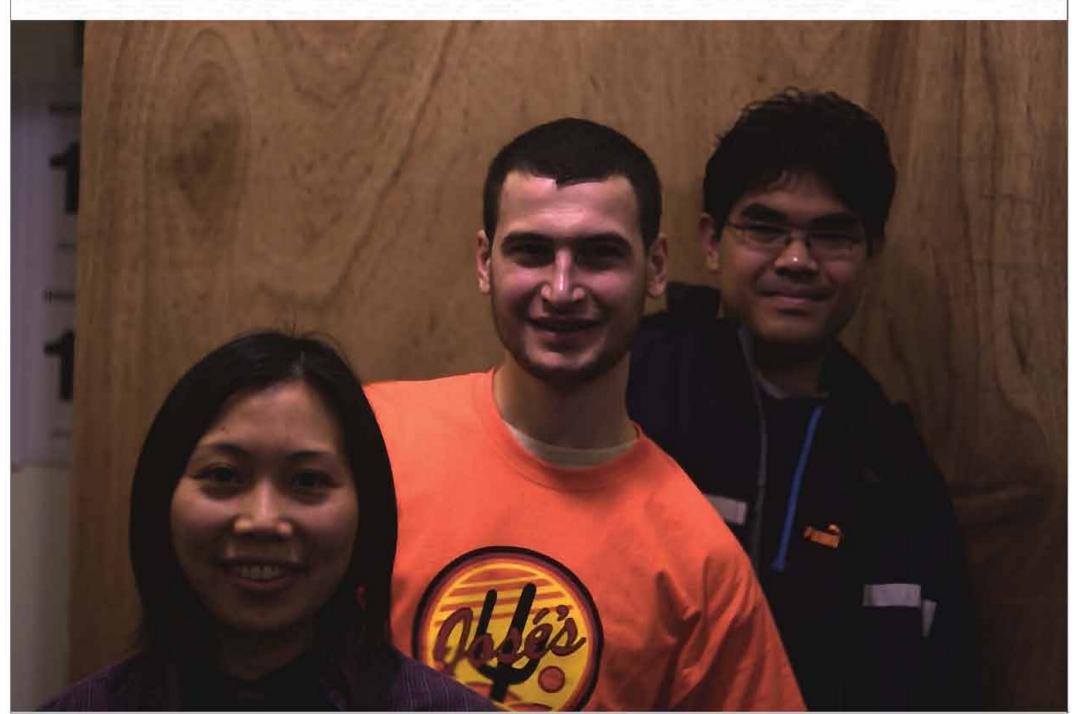




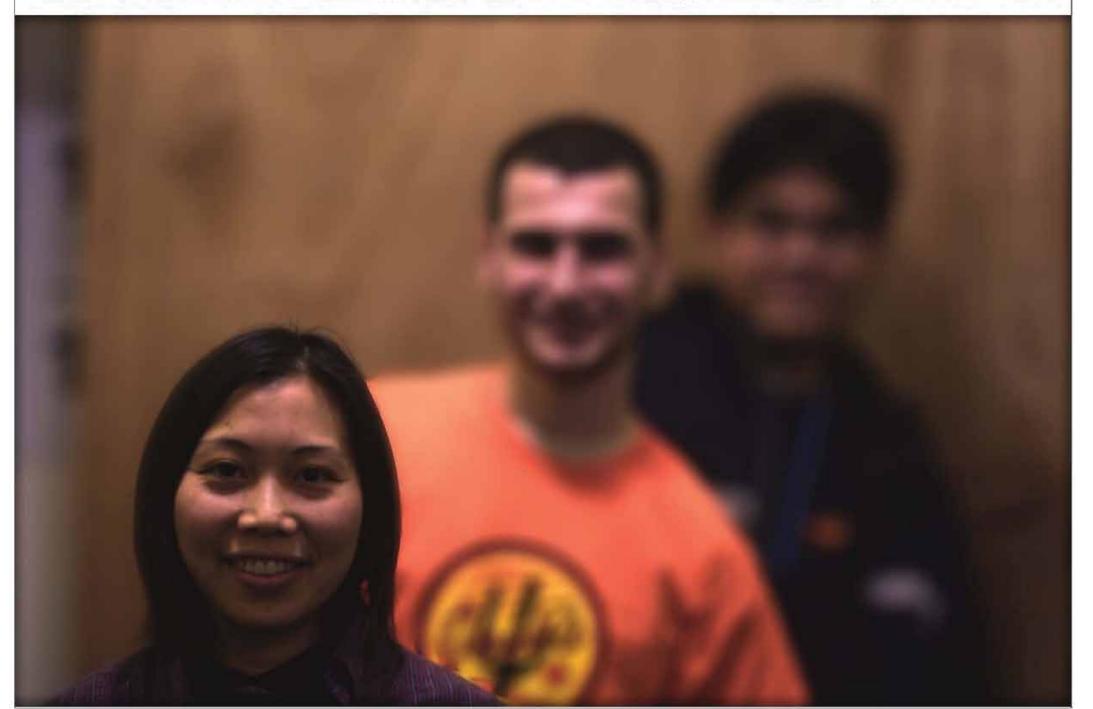




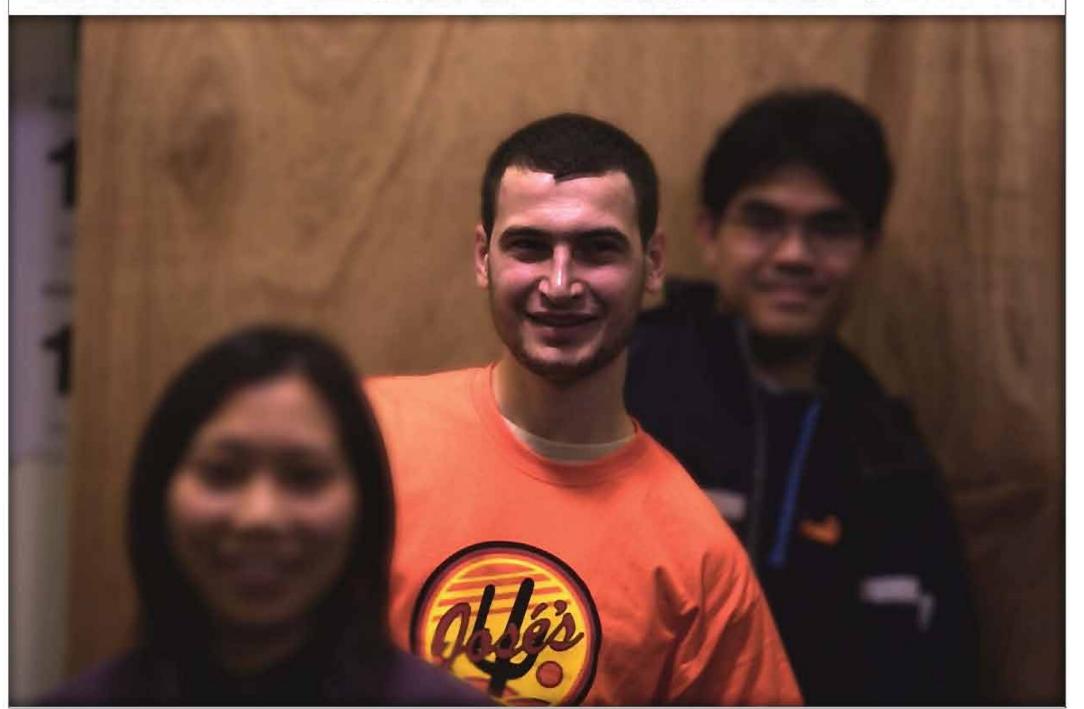
Deconvolved



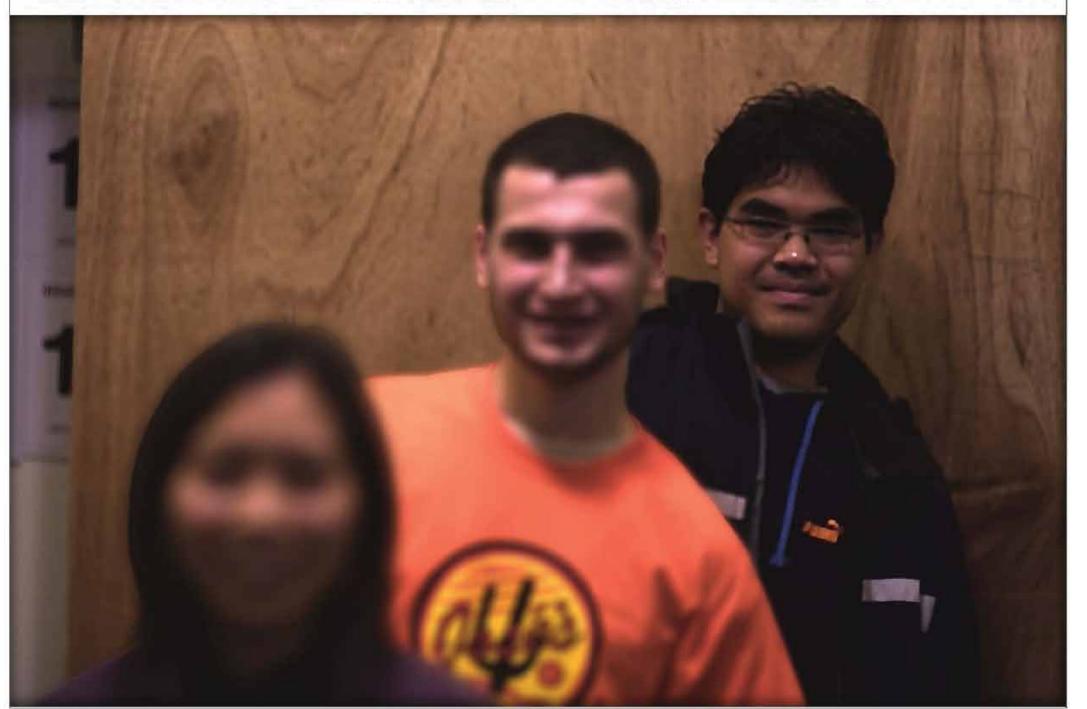
Refocusing (from single image!)



Refocusing (from single image!)



Refocusing (from single image!)



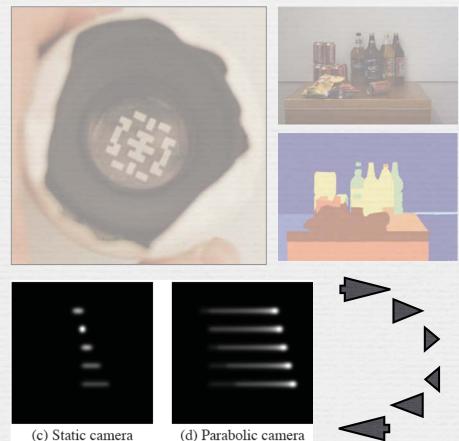
Big ideas in Comp Photo

 Multiple-exposure & multiplexing + Coded imaging + Prior information The raw data is high dimensional Active imaging

Outline

Natural image prior

 Coded aperture: make blur vary more with depth



To reduce motion blur, increase it!

- move camera as picture is taken
- Makes blur invariant to motion- can be removed with spatially uniform deconvolution
 - kernel is known (no need to estimate motion)
 - kernel identical over the image (no need to segment)
- Makes blur easy to invert

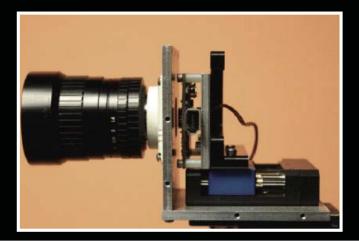
Inspiration: depth invariant defocus

Wavefront coding - manipulate optical element

Cathey and Dowski 94

Vary object/detector distance during integration

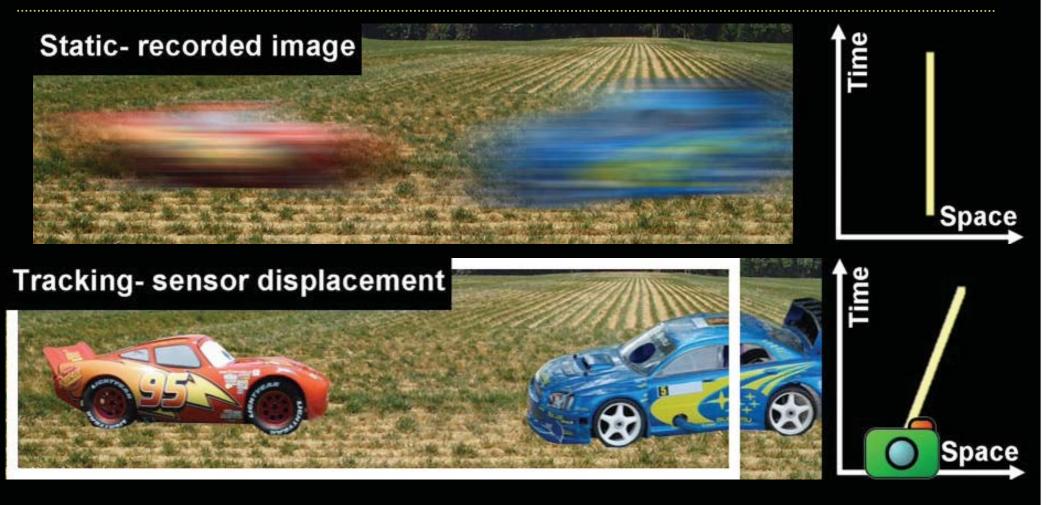
- Hausler 72
- Nagahara, Kuthirummal, Zhou, Nayar 08

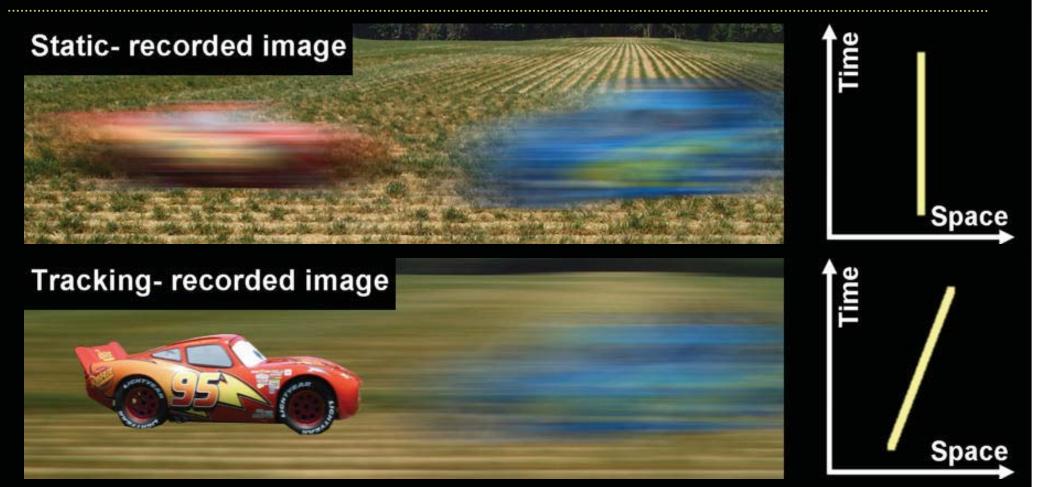


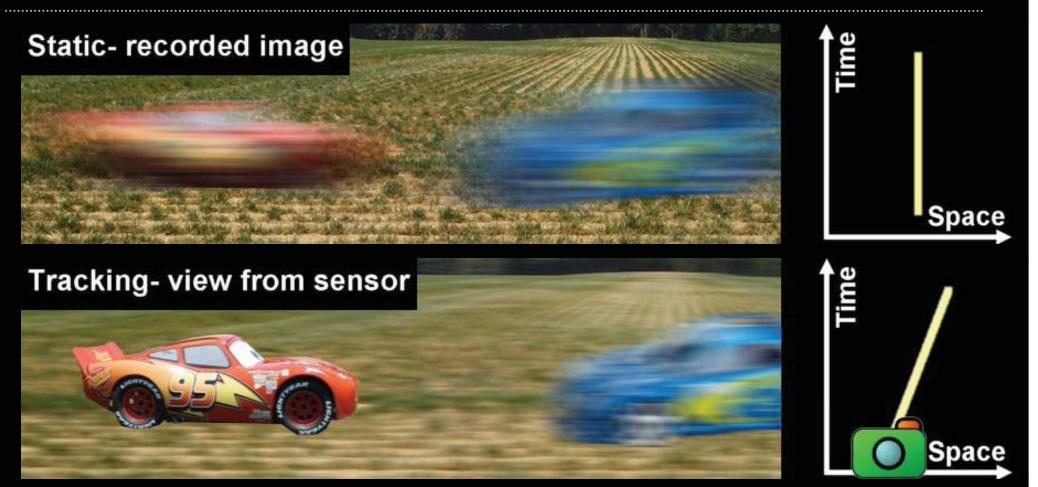
Motion invariant blur- disclaimers:

- Assumes 1D motion (e.g. horizontal)
- Degrades quality for static objects

Can we control motion blur?







Space

Tracking- recorded image

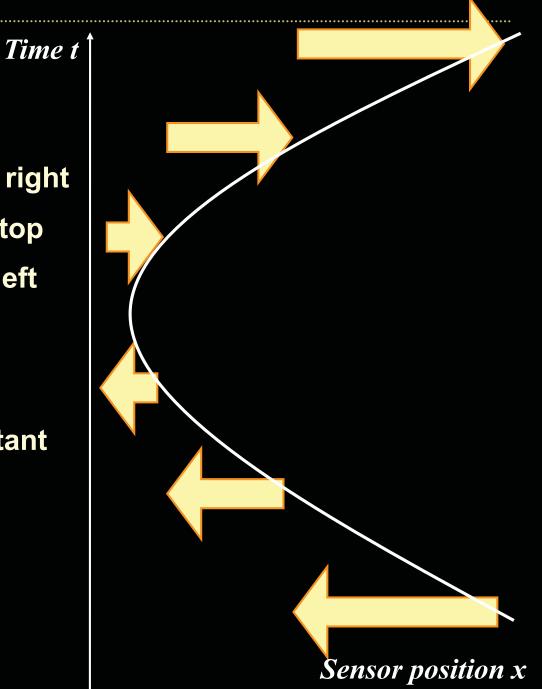
Parabolic sweep

Sensor position $x(t)=a t^2$

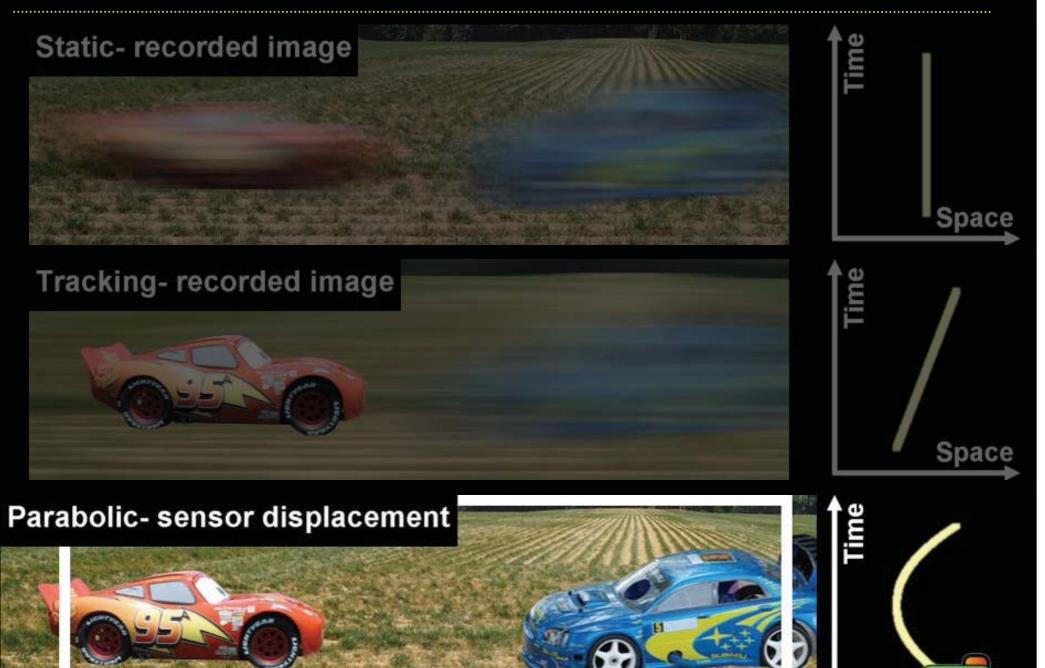
- Start by moving very fast to the right
- Continuously slow down until stop
- Continuously accelerate to the left

Intuition:

For any velocity, there is one instant where we track perfectly.



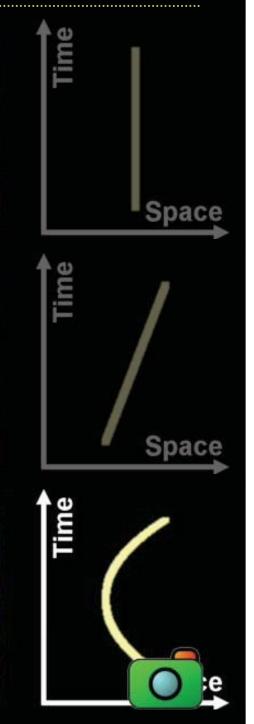
Motion invariant blur



Motion invariant blur

Tracking- recorded image

Parabolic- view from sensor

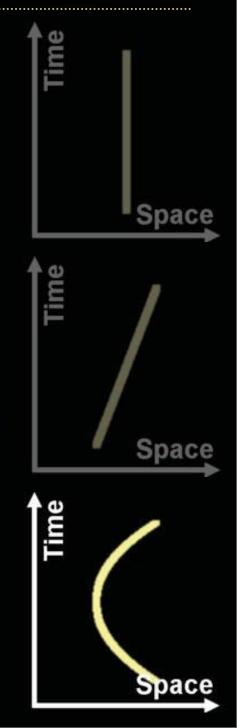


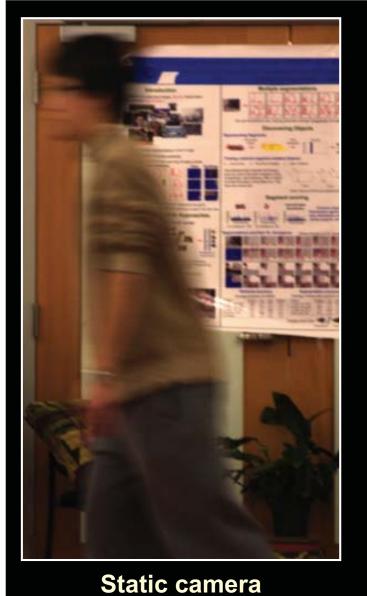
Motion invariant blur

Static- recorded image

Tracking- recorded image

Parabolic- recorded image





Our parabolic input

Unknown and variable blur kernels

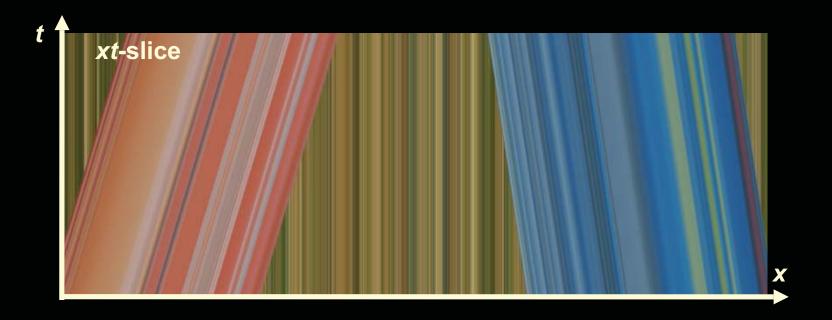
Blur kernel is invariant to velocity

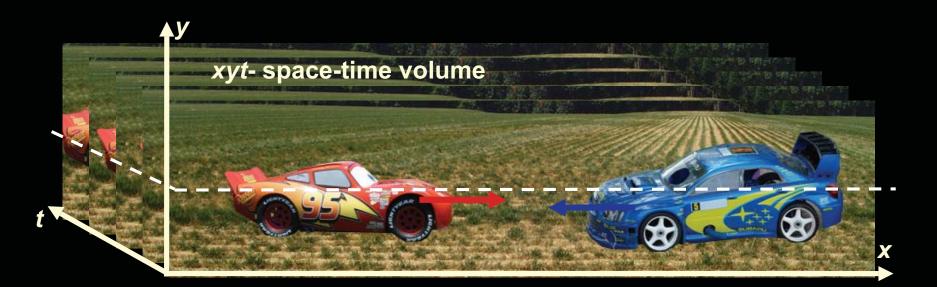
Our output after deblurring

Big ideas in Comp Photo

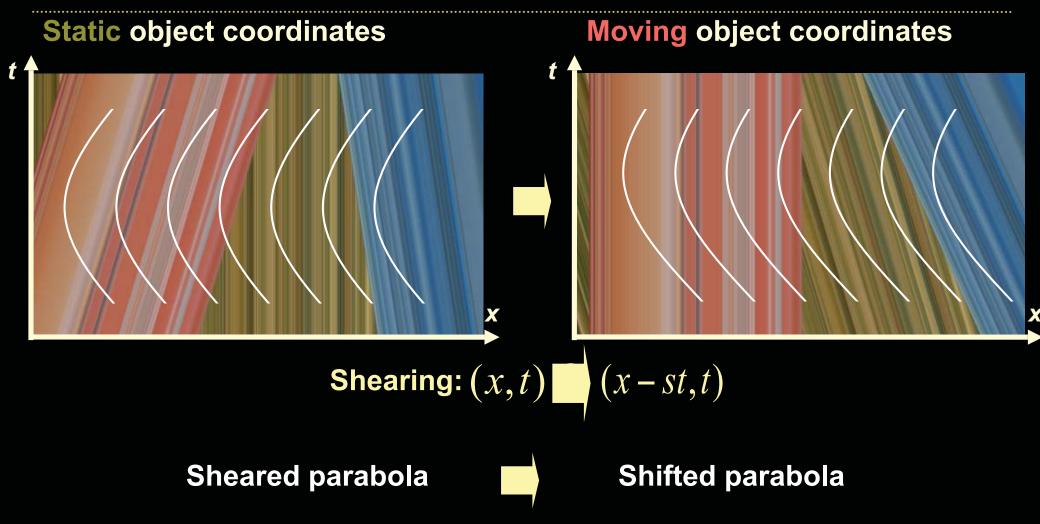
 Multiple-exposure & multiplexing + Coded imaging Prior information The raw data is high dimensional Active imaging

The space time volume





Solution: parabolic curve - shear invariant



Deblurring and information loss

Assume: we could perfectly identify blur kernel

Which camera has motion blur that is easy to invert? - Static? Flutter Shutter? Parabolic?

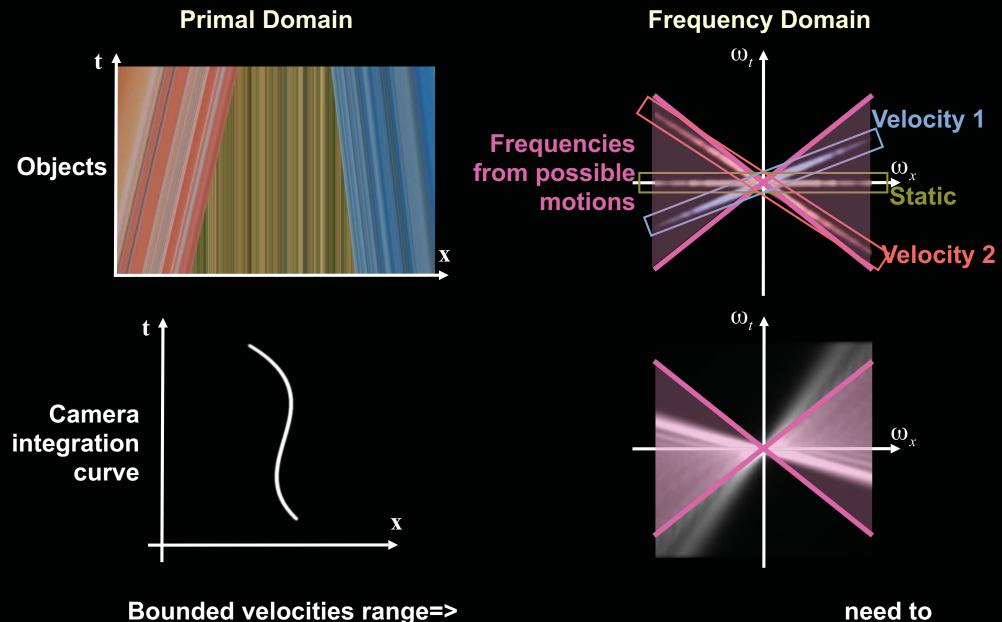
Prove: parabolic motion achieves near optimal information preservation

blurred input

static input

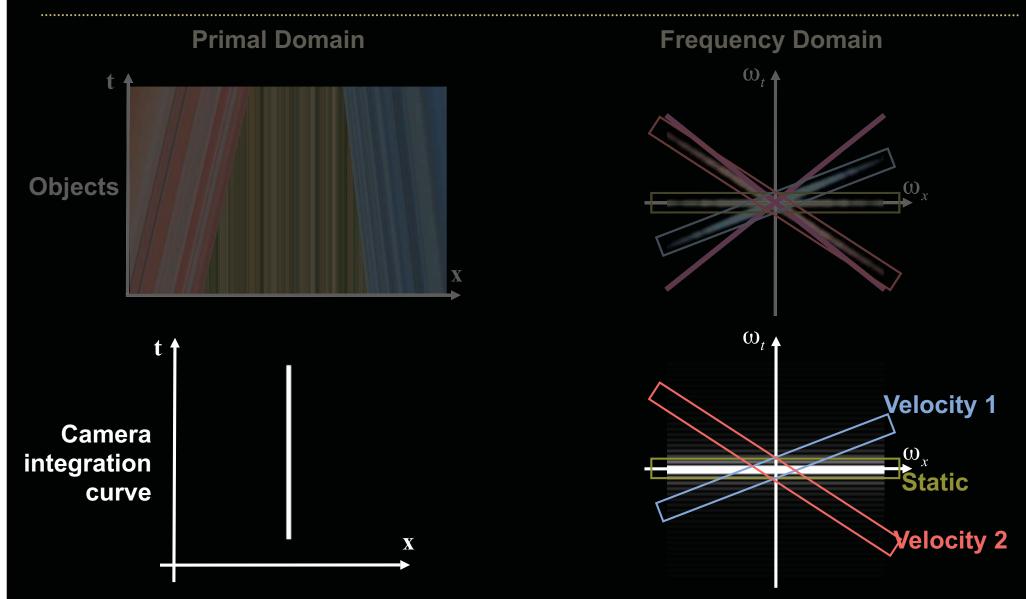
deblurred

Space-time Fourier domain



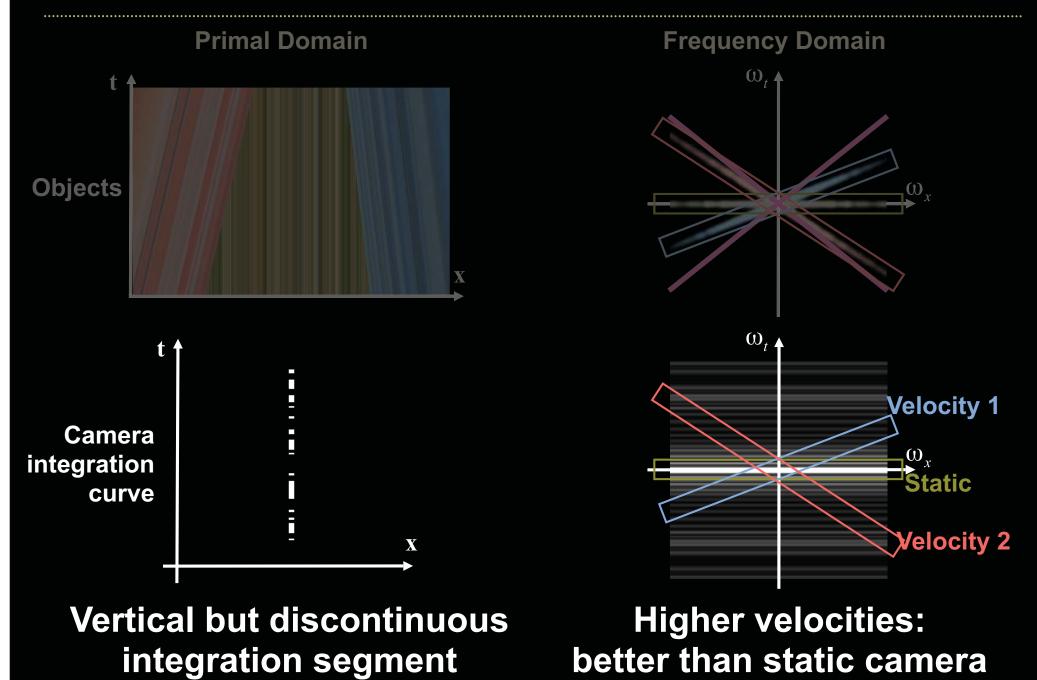
Bounded velocities range=> no preserve a double wedge in the frequency domain

Static camera

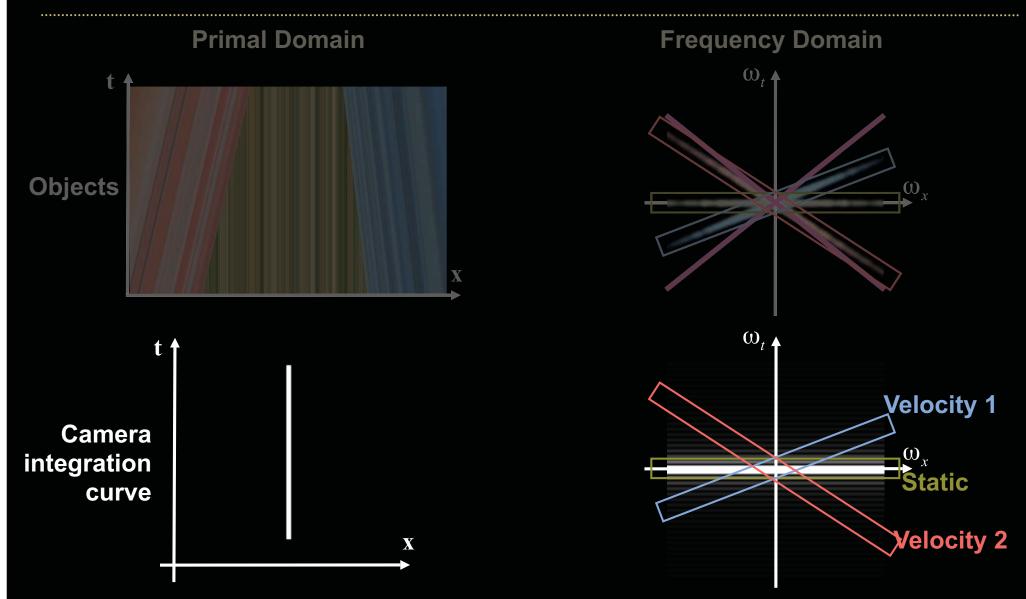


Vertical integration segment Static object: high response Higher velocities: low

Flutter shutter (Raskar et al 2006)

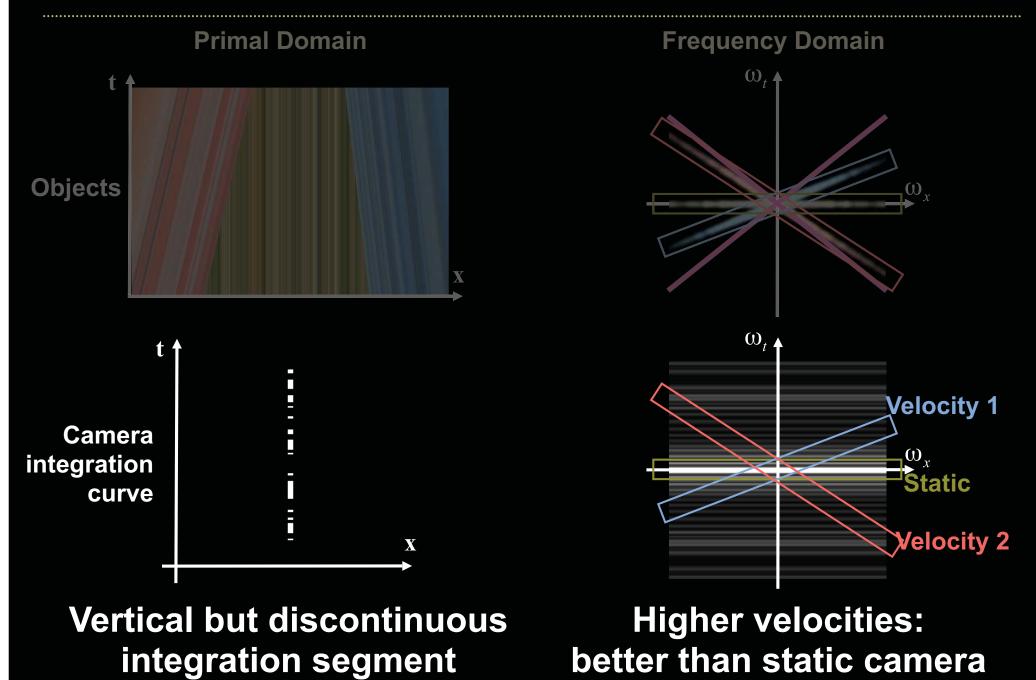


Static camera

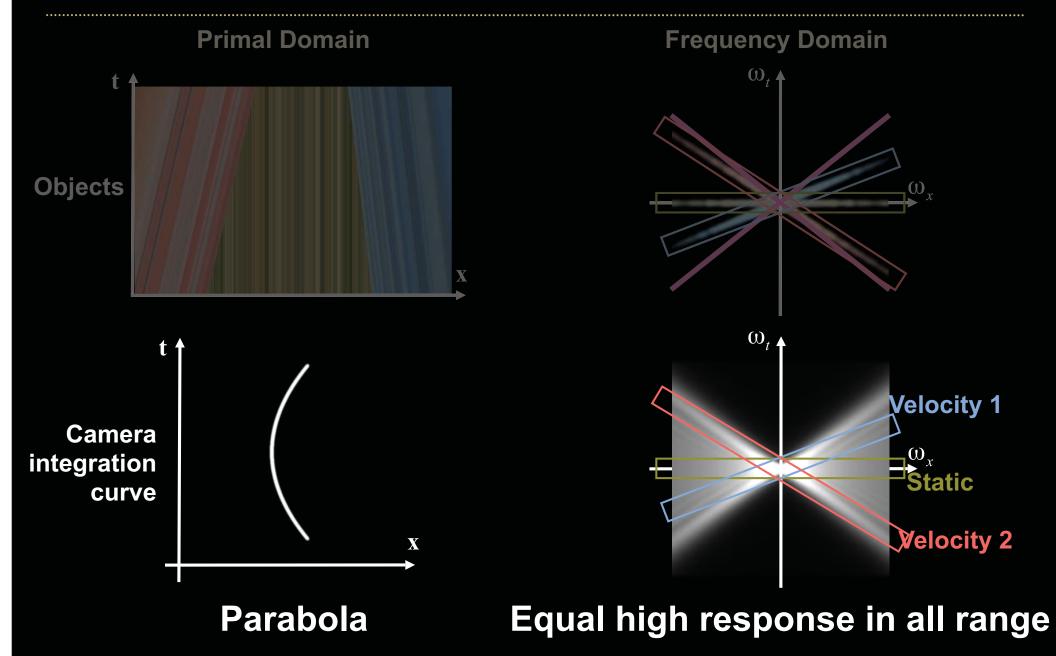


Vertical integration segment Static object: high response Higher velocities: low

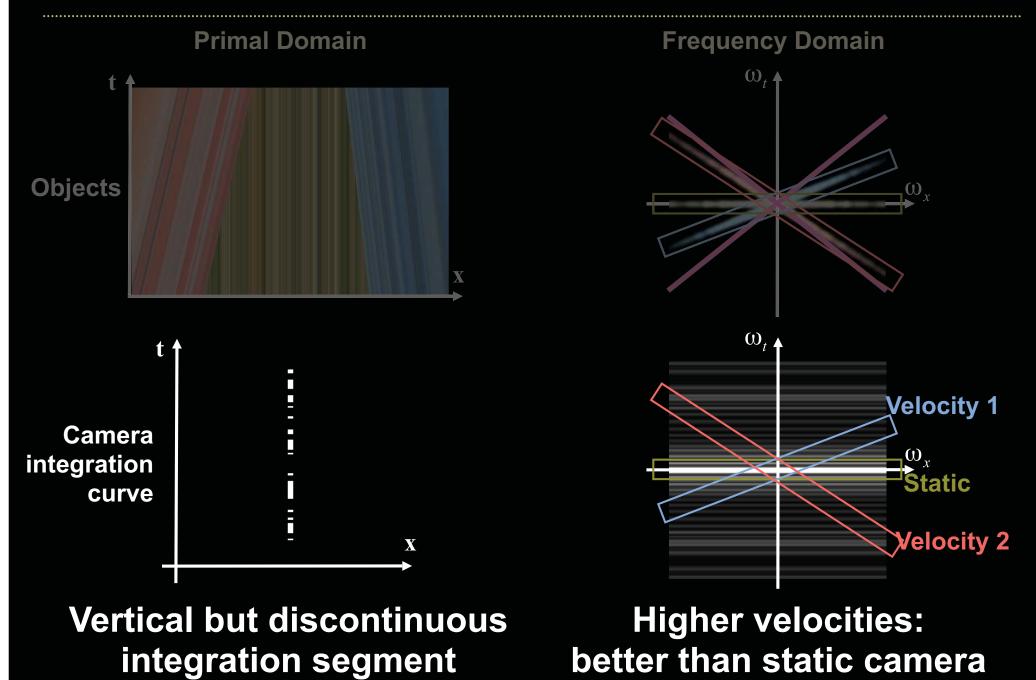
Flutter shutter (Raskar et al 2006)



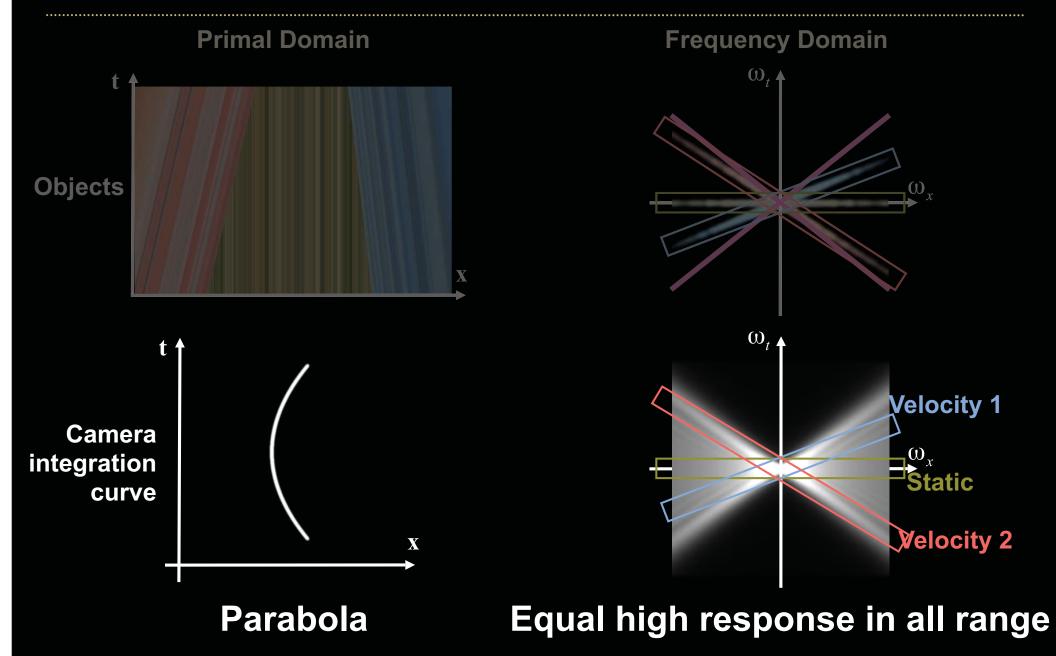
Our parabolic camera



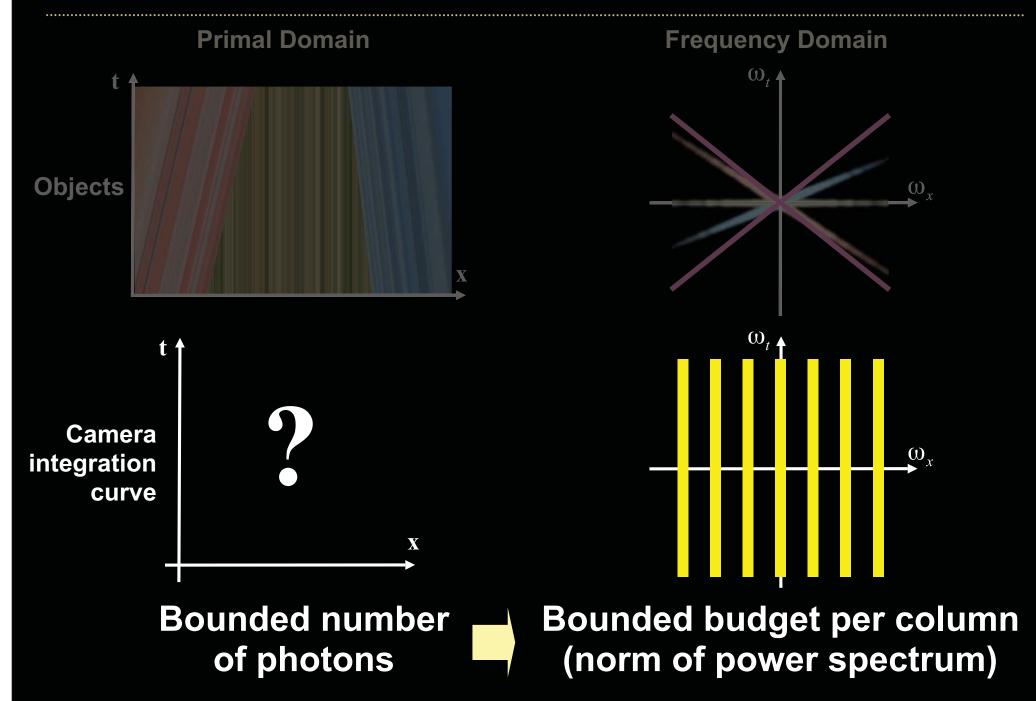
Flutter shutter (Raskar et al 2006)



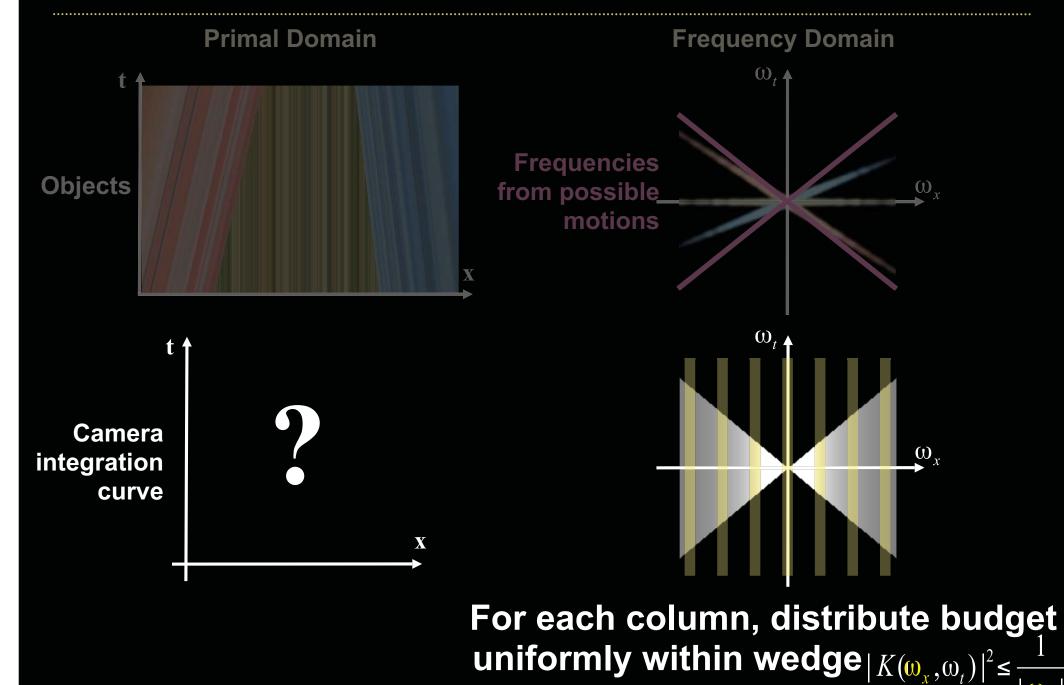
Our parabolic camera



Information budget

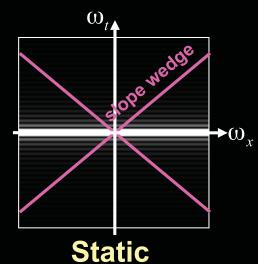


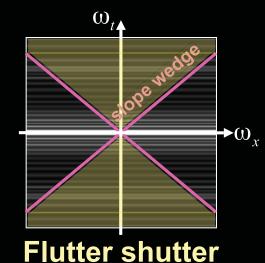
Upper bound given velocity range

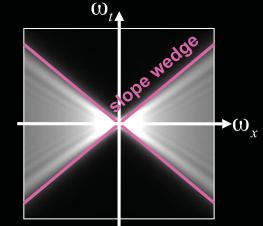


 ω_x

Cameras and information preservation



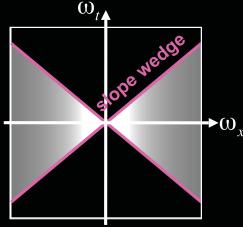




Parabolic

Constant horizontally Near optimal

Spends frequency "budget" outside wedge Near optimal "budget" usage at all frequencies

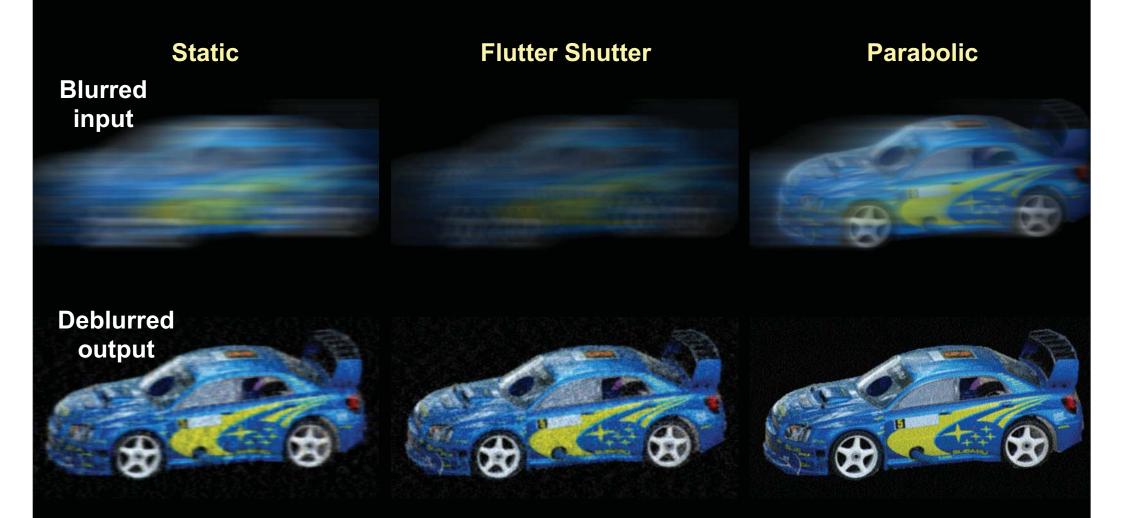


Upper bound

Bounded "budget" per column _{(0,}

Handles 2D motion

Comparing camera reconstruction



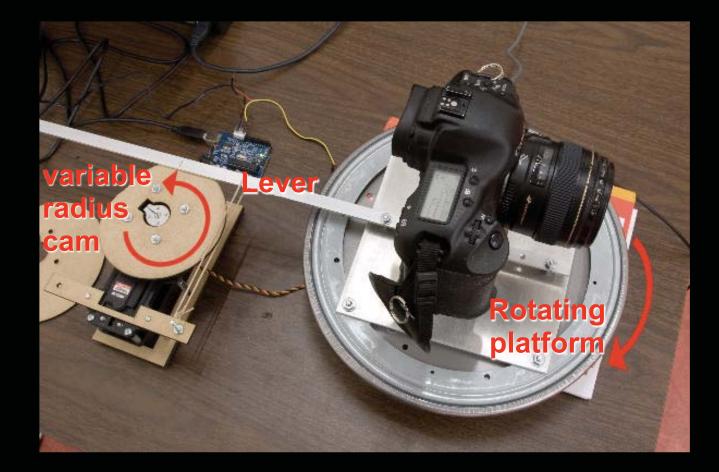
Note: synthetic rendering, exact PSF is known

Big ideas in Comp Photo

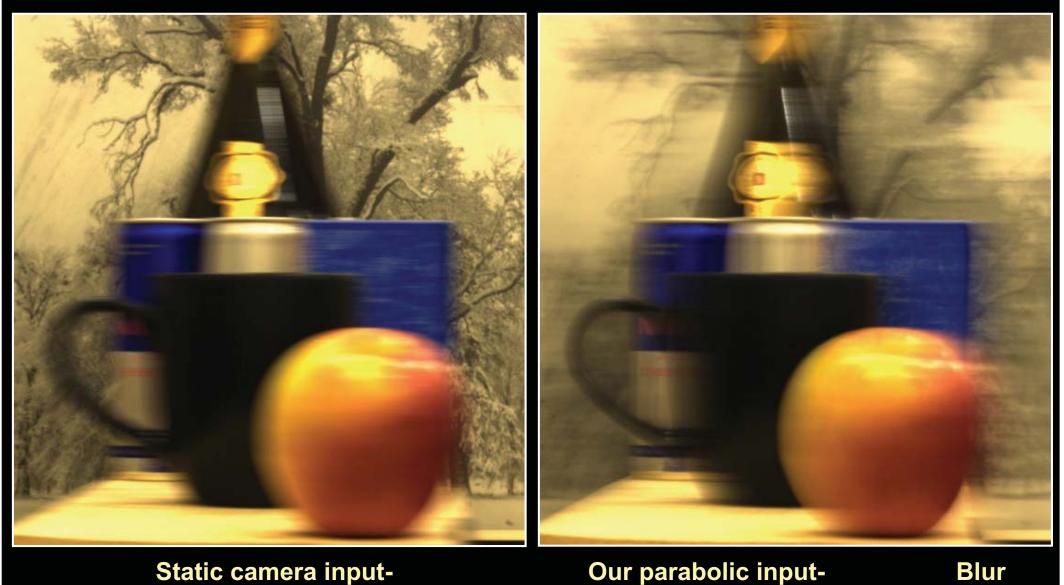
 Multiple-exposure & multiplexing + Coded imaging Prior information + The raw data is high dimensional Active imaging

Hardware construction

- Ideally move sensor
 - (requires same hardware as existing stabilization systems)
- In prototype implementation: rotate camera



Linear rail



Static camera input-Unknown and variable blur Our parabolic inputis invariant to velocity

Linear rail

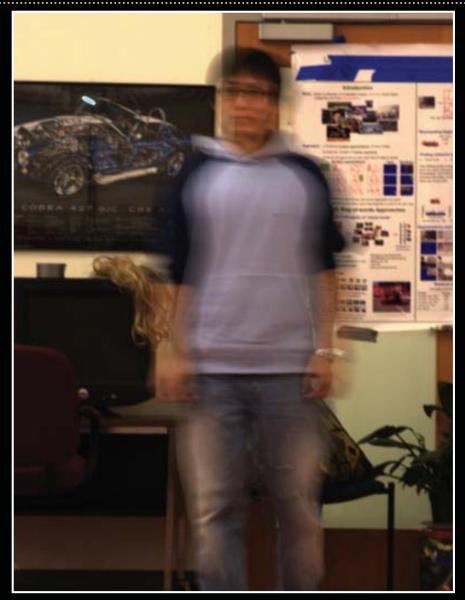
Static camera input-Unknown and variable blur Our output after deblurring-NON-BLIND deconvolution

Human motion- no perfect linearity

Input from a static camera

Deblurred output from our camera

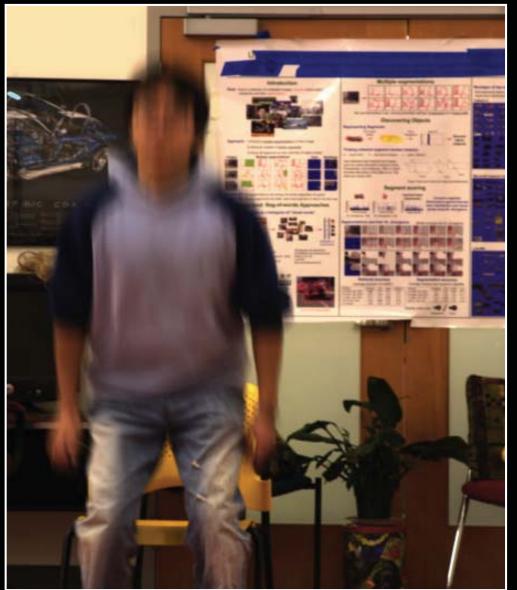
Violating 1D motion assumption-forward motion



Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption - stand-up motion



Input from a static camera

Deblurred output from our camera

Violating 1D motion assumption- rotation

Input from a static camera

Deblurred output from our camera

Parabolic curve - issues

- Spatial shift- but does not affect visual quality in deconvolution
- Parabola tail clipping: not exactly the same blur
- Motion boundaries break the convolution model
- Assumes: Object motion horizontal

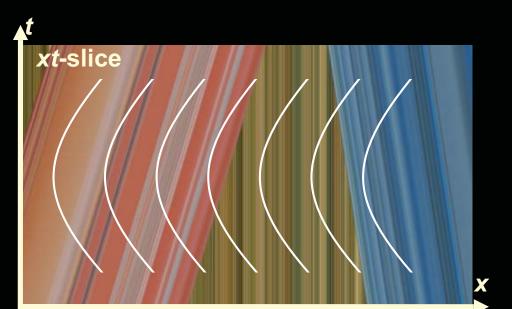
Object motion linear up to 1st order approximation

Conclusions

- Camera moved during exposure, parabolic displacement
- Blur invariant to motion:
 - Same over all image (no need to segment)
 - Known in advance (no kernel identification)
- Easy to invert (near optimal frequency response)
- For 1D motion
 - Somewhat robust to 1D motion violation
 - Future work: 2D extensions

Acknowledgments:

NSF CAREER award 0447561 Royal Dutch/Shell Group NGA NEGI-1582-04-0004 Office of Naval Research MURI MSR New Faculty Fellowship Sloan Fellowship

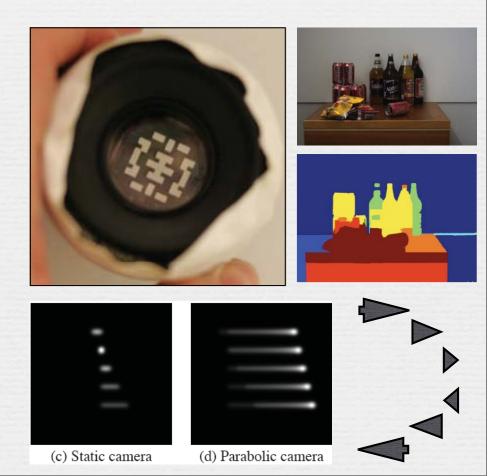


Summary

Natural image prior

Coded aperture : make kernel easier to identify
benefit: large depth of field + depth

- Motion-invariant photography
 - For 1D motion, blur invariant to velocity



Big ideas in Comp Photo

+ Goals:

- Beat physics, better image quality/quantity
- More data (depth, etc.)
- New visual media
- Seeing the unseen
- Multiple-exposure imaging & multiplexing
- Coded imaging
- Prior information
- Edges matter
- The raw data is high dimensional
- Active imaging

Challenges

- Theory, frameworks, comparisons, optimality
- Diffraction, wave optics
- Putting it all together (engineering, system, applications)
- Better priors
 - Kernel identification
 - High-quality inversion
- ✤ Video
- Real-time enhancement (microscope)
- Applied visual perception
- Intrinsic images
- Matting
- Scene and object recognition
- ✤ 3D reconstruction

Understanding camera trade-offs through a Bayesian analysis of light field projections

Anat Levin¹, Bill Freeman^{1,2}, Fredo Durand¹

Computer Science and Artificial Intelligence Lab (CSAIL), ¹Massachusetts Institute of Technology and ²Adobe Systems

Cameras, old and new

Traditional camera: Lens forms final 2D image

Computational camera: Recorded data is not the final output.

- Visual array estimated from sensor measurements.
- Extra design degree of freedom. Beyond 2D images--acquisition of light field or depth. Post-exposure re-synthesis of image.

An explosion of cameras

- Best way to capture image and depth: Stereo? Plenoptic camera? Coded aperture? or...?
- What aspects of these cameras contribute to their performance?
- Can we design new cameras with improved reconstruction performance?

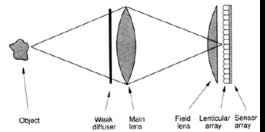
Conventional single-

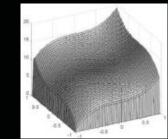
lens cameras

Coded aperture

Plenoptic cameras







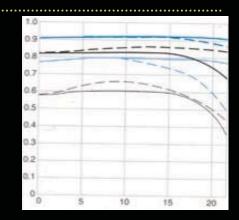
Wavefront coding

Stereo and trinocular cameras

Camera evaluation, old and new

Traditional optics evaluation:

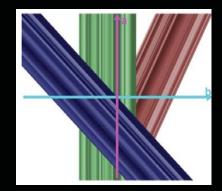
2D image sharpness (eg, Modulation Transfer Function)



contrast vs. spatial frequency

Our modern camera evaluation:

How well does the recorded data allow us to <u>estimate</u> the visual world - the lightfield?



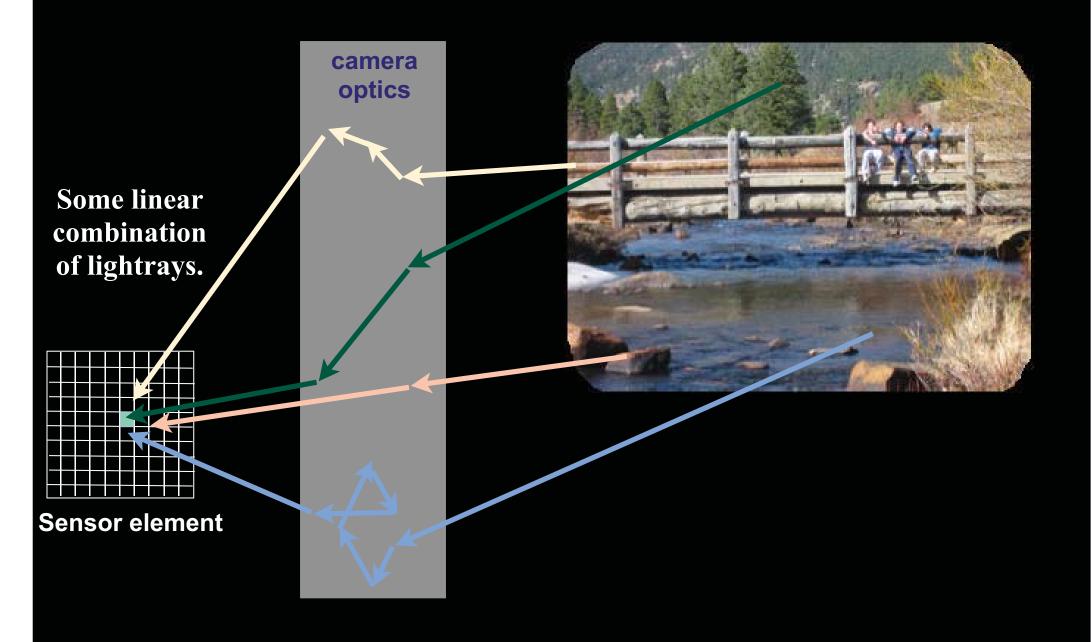
lightfield reconstruction

Computational photography camera evaluation: an estimation problem

- Characteristics of the signal to be estimated.
- Projection functions of various cameras.
- Bayesian lightfield analysis
 - -Reconstructing the lightfield from camera data.
 - -Comparing performance tradeoffs of different cameras.

so let's talk about lightfields and cameras

What does a camera sensor element record?



Sensor element data

yi = datum **Ti** The camera

4D->2D linear projection

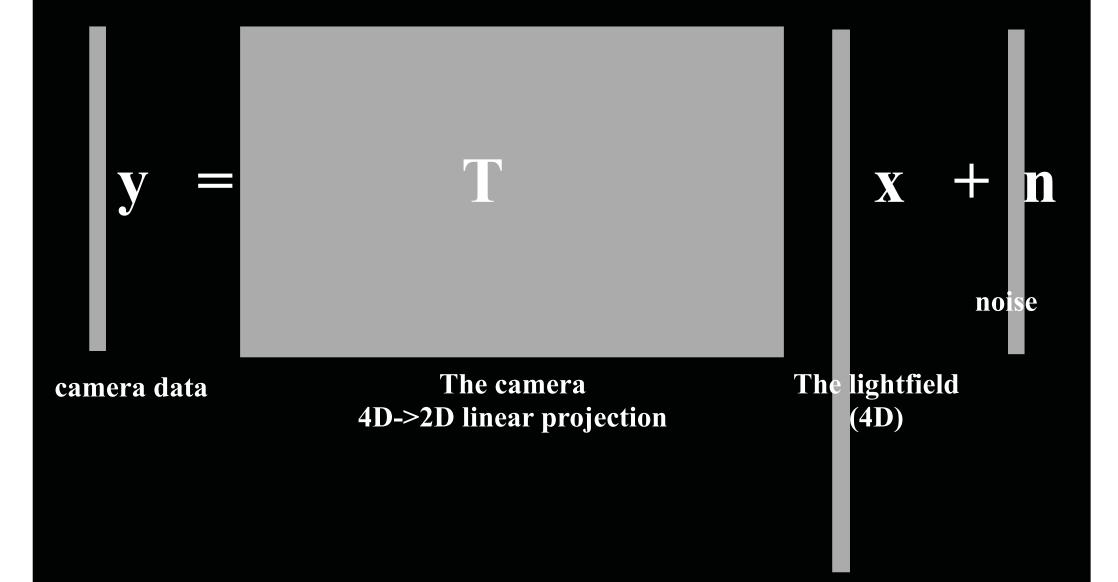
 X + ni

 noise

 The lightfield (4D)

What is a camera?

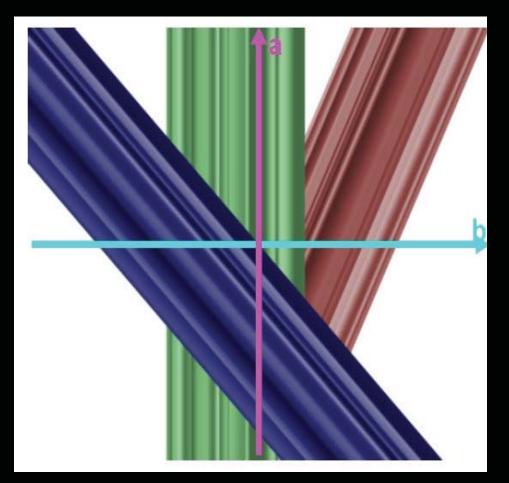
Camera: all-positive linear projection of a 4D lightfield



A more revealing parameterization of the lightfield

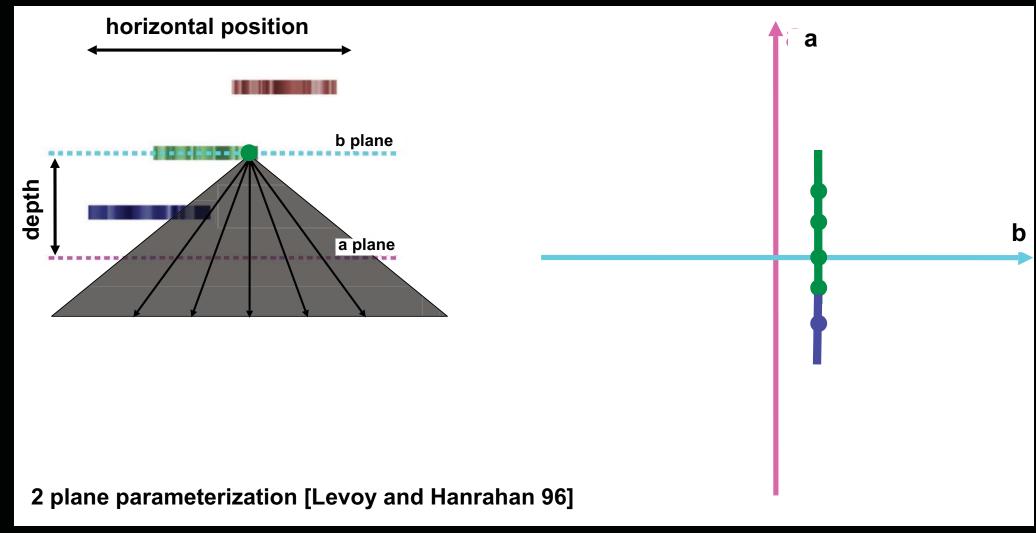
Light field: parameterization of the 4D space of light rays in the world

Provides a convenient way to model different lenses and cameras designs



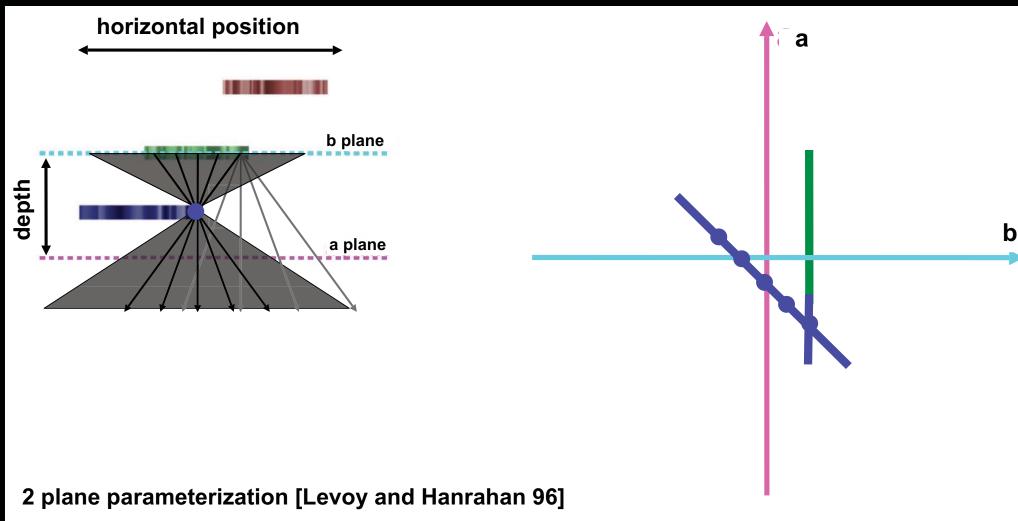
Lightfield tutorial

flatworld 1D scene



Lightfield tutorial

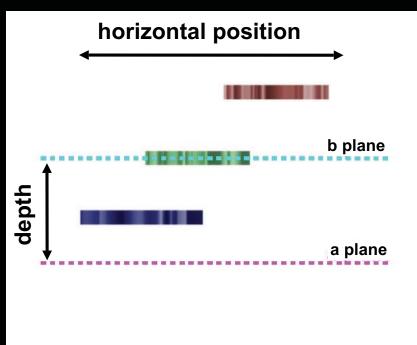
flatworld 1D scene

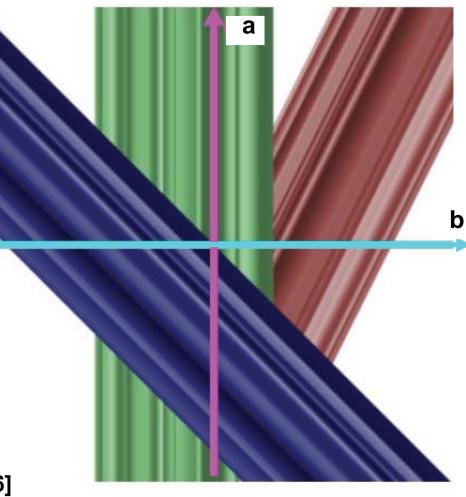


Lightfield tutorial

flatworld 1D scene

2D lightfield



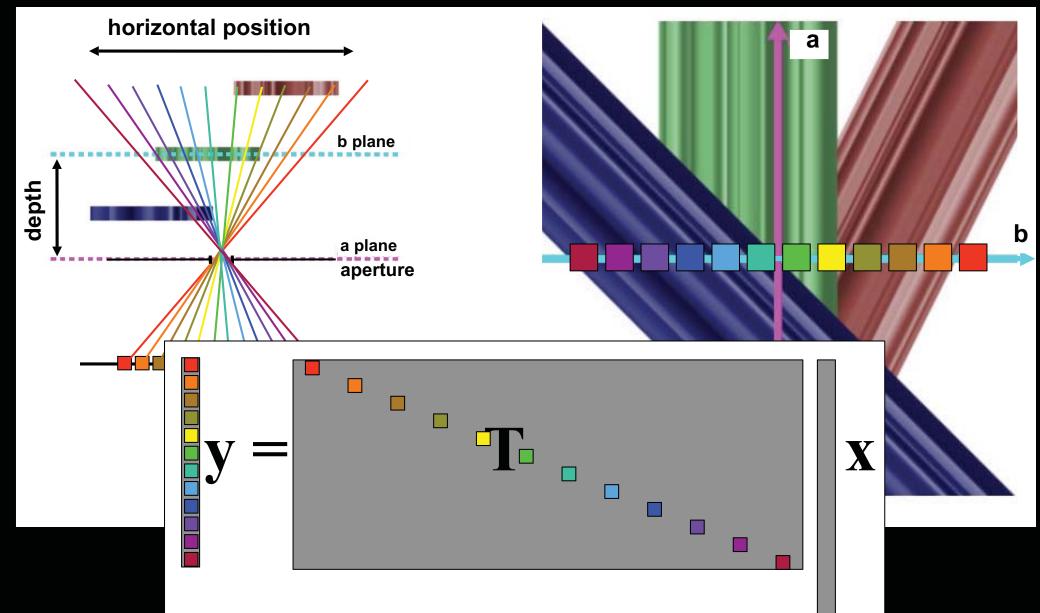


2 plane parameterization [Levoy and Hanrahan 96]

Pinhole camera

flatworld 1D scene

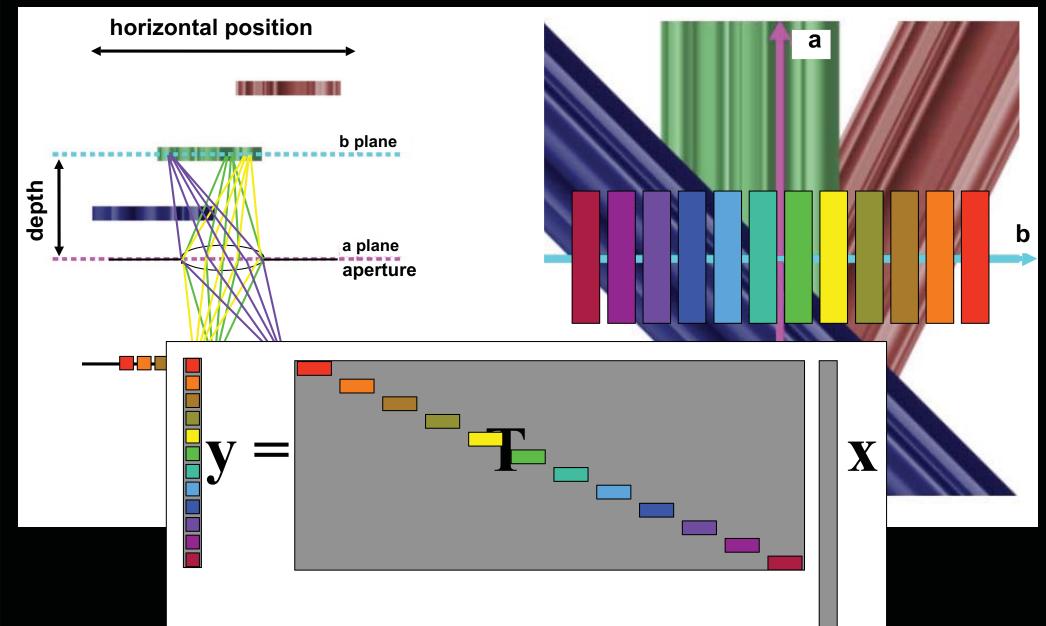
2D lightfield



Lens, focused at green object

flatworld 1D scene

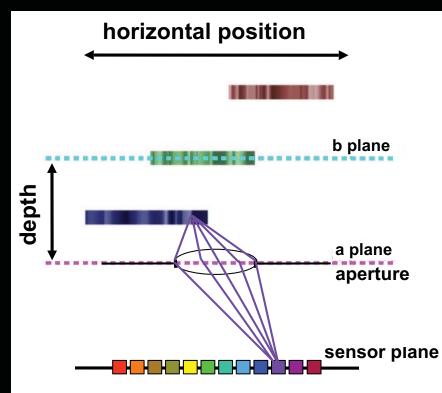
2D lightfield

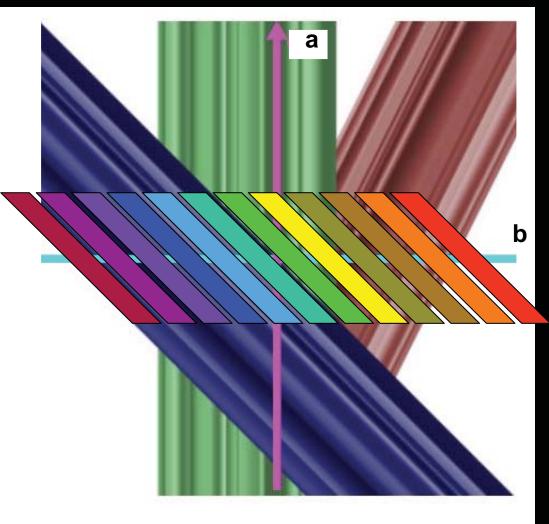


Lens, focused at blue object

flatworld 1D scene

2D lightfield

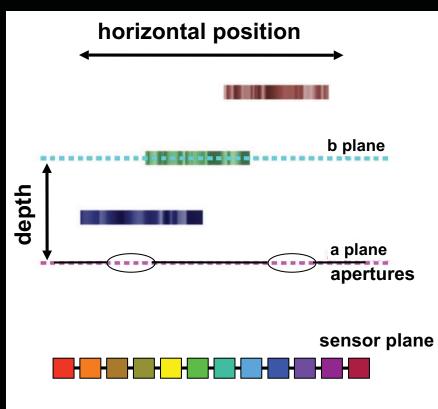


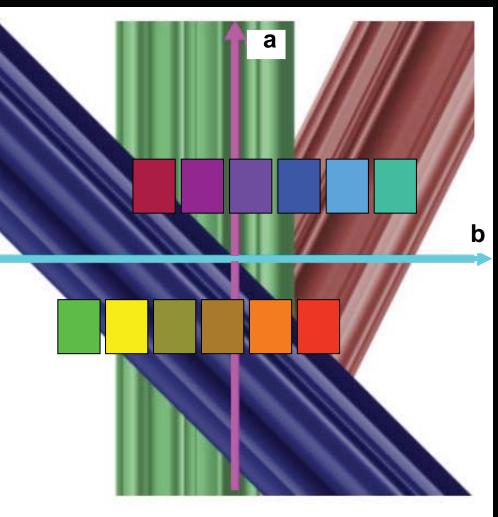


Stereo

flatworld 1D scene

2D lightfield

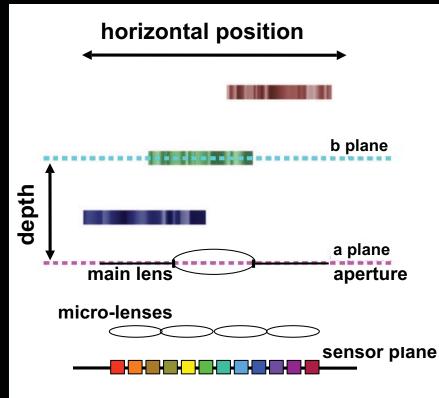


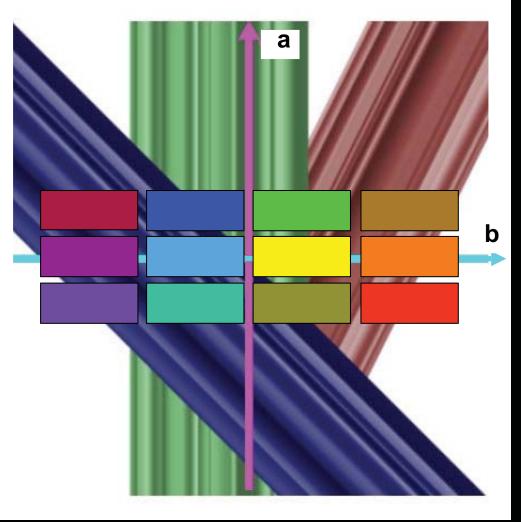


Plenoptic camera

flatworld 1D scene

2D lightfield



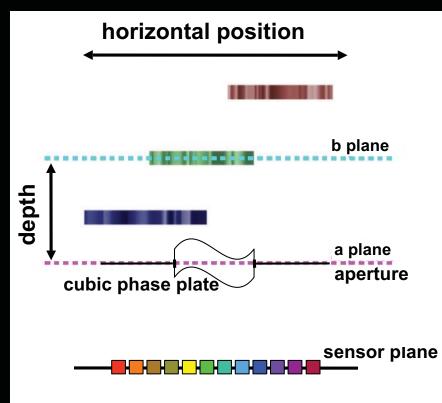


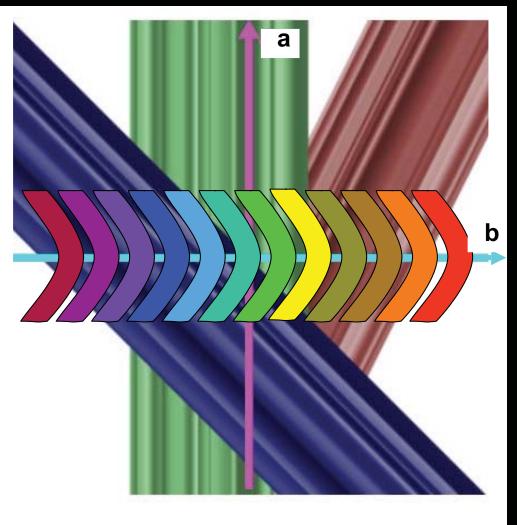
Adelson and Wang 92, Ng et al 05

Wavefront coding

flatworld 1D scene

2D lightfield





Dowski and Cathey,94

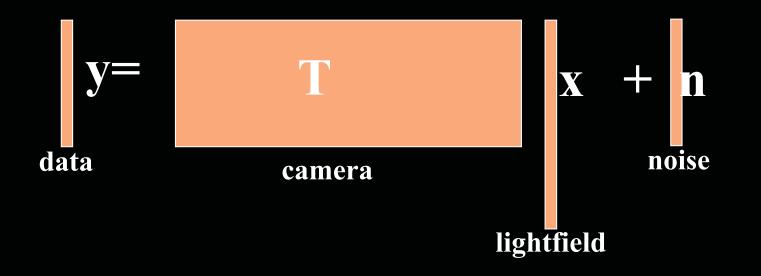
Computational imaging

Camera: Rank deficient projection of a 4D lightfield.

Decoding: ill-posed inversion, need prior on lightfield signals.

Camera evaluation: How well can recover the lightfield from projection?

 $\mathbf{y} = \mathbf{T}\mathbf{x} + \mathbf{n}$



Varying imaging goals by weighted lightfield reconstruction

- Full light field reconstruction (potentially image&depth)
- Reconstruct a bounded view range
- Single row light field reconstruction (pinhole all focused image)

Weigh reconstruction error differently in different light field entries

Bayesian lightfield imaging - Outline

- Specify lightfield reconstruction goals
 - Full lightfield / Single, all-focus view /...
- Specify lightfield prior
- Imaging with one computational camera
 - Specify camera projection matrix
 - Camera decoding Bayesian inference
- Comparing computational cameras
 - Specify camera projection matrices
 - Evaluate expected error in lightfield reconstruction

Bayesian lightfield imaging - Outline

- Specify lightfield reconstruction goals
 - Full lightfield / Single, all-focus view /...
- Specify lightfield prior
- Imaging with one computational camera
 - Specify camera projection matrix
 - Camera decoding Bayesian inference
- Comparing computational cameras
 - Specify camera projection matrices
 - Evaluate expected error in lightfield reconstruction

Our light field prior: a mixture of signals at different slopes

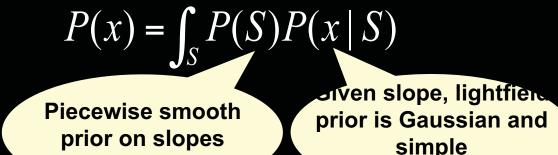
Hidden variable S modeling local slope

Conditioning on slope:

small variance along slope direction

high variance along spatial direction

Light field prior is a mixture of oriented Gaussians (MOG):



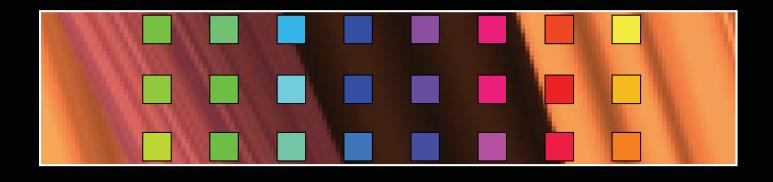
Bayesian lightfield imaging - Outline

- Specify lightfield reconstruction goals
 - Full lightfield / Single, all-focus view /...
- Specify lightfield prior

Imaging with one computational camera

- Specify camera projection matrix
- Camera decoding Bayesian inference
- Comparing computational cameras
 - Specify camera projection matrices
 - Evaluate expected error in lightfield reconstruction

Prior effect on reconstruction



Band-limited reconstruction to account for unknown depth

See paper for inference details

Reconstruction using light field prior

Bayesian lightfield imaging - Outline

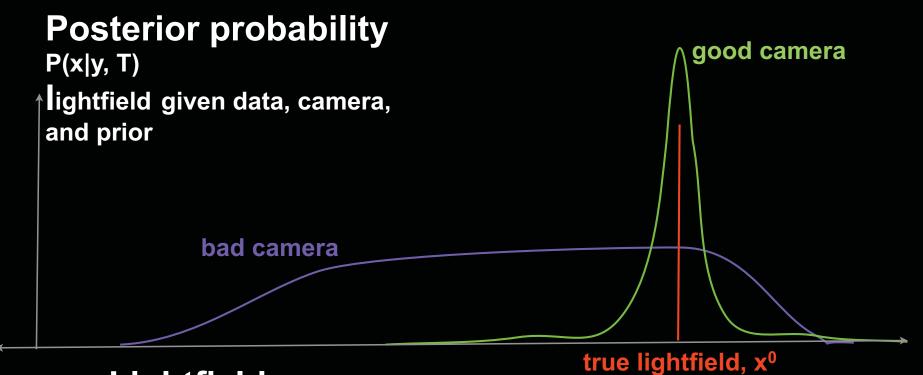
- Specify lightfield reconstruction goals
 - Full lightfield / Single, all-focus view /...
- Specify lightfield prior
- Imaging with one computational camera
 - Specify camera projection matrix
 - Camera decoding Bayesian inference

Comparing computational cameras

- Specify camera projection matrices
- Evaluate expected error in lightfield reconstruction

Camera evaluation

Goal: evaluate inherent ambiguity of a camera projection, independent of inference algorithm



Lightfield, x

(schematic picture of the very high-dimensional vector)

Camera evaluation function: expected squared error

$$E_{P(x|y;T)} \| x - x^0 \|^2 = \int_x P(x | y;T) \| x - x^0 \|^2$$

With our mixture model prior, conditioned on the lightfield slopes S, everything is Gaussian and analytic. So let's write the posterior as:

$$P(x \mid y;T) = \int_{S} P(S \mid y;T)P(x \mid y,S;T)$$

Then our expected squared error becomes an integral over all slope fields:

$$E_{P(x|y;T)}\left[\|x - x^0\|^2 \right] = \int_{S} P(S \mid y;T) E_{P(x|y,S;T)} \left[\|x - x^0\|^2 \right]$$

Approximate by Monte Carlo sampling near the true slope field:

$$E_{P(x|y;T)} \| x - x^0 \|^2 \ge \sum_{S_i} P(S_i | y;T) E_{P(x|y,S_i;T)} \| x - x^0 \|^2$$

Bayesian camera evaluation tool

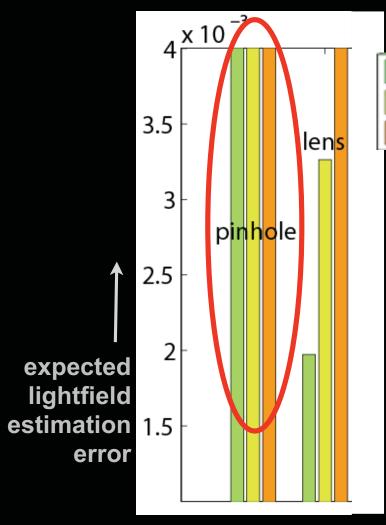
Input parameters:

- Reconstruction goals (weight on light field entries)
- Camera matrix
- Noise level
- Spatial and depth resolution

Output: expected reconstruction error

Matlab software online:

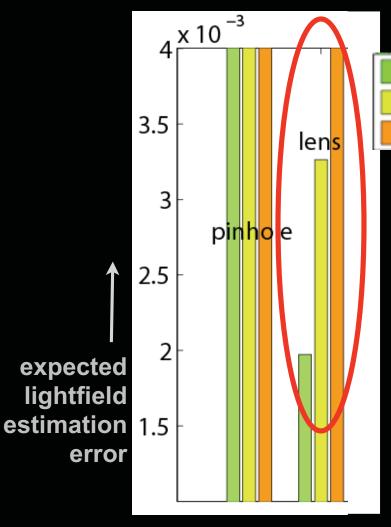
people.csail.mit.edu/alevin/papers/lightfields-Code-Levin-Freeman-Durand-08.zip



No depth discontinuities Modest depth discontinuities Many depth discontinuities

Observation:

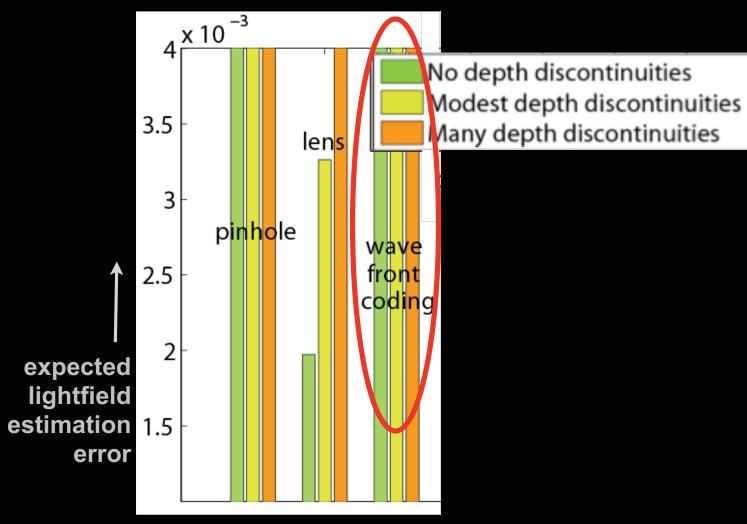
As expected, a pinhole camera doesn't estimate the lightfield well



No depth discontinuities Modest depth discontinuities Many depth discontinuities

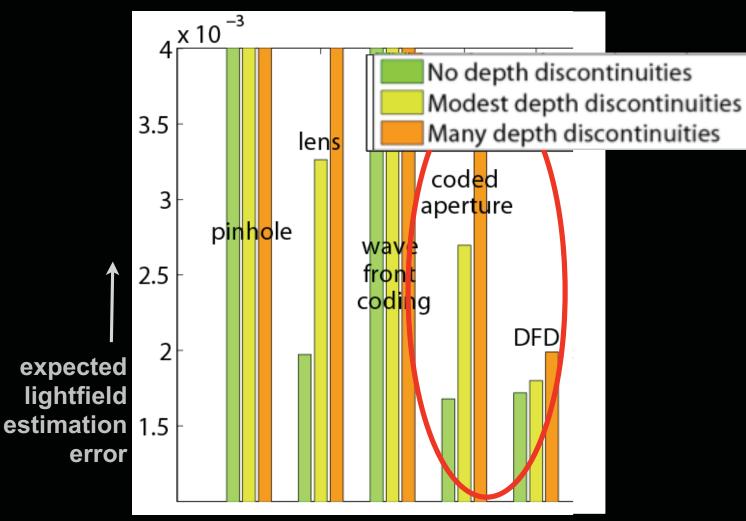
Observation:

When depth variation is limited, some depth from defocus exist in a single monocular view from a standard lens



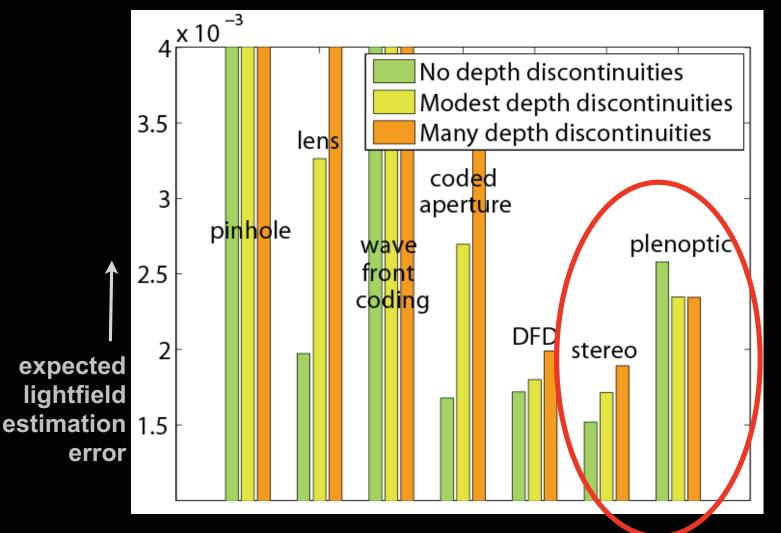
Observation:

Wavefront coding, not designed to estimate the lightfield, doesn't.



Observation:

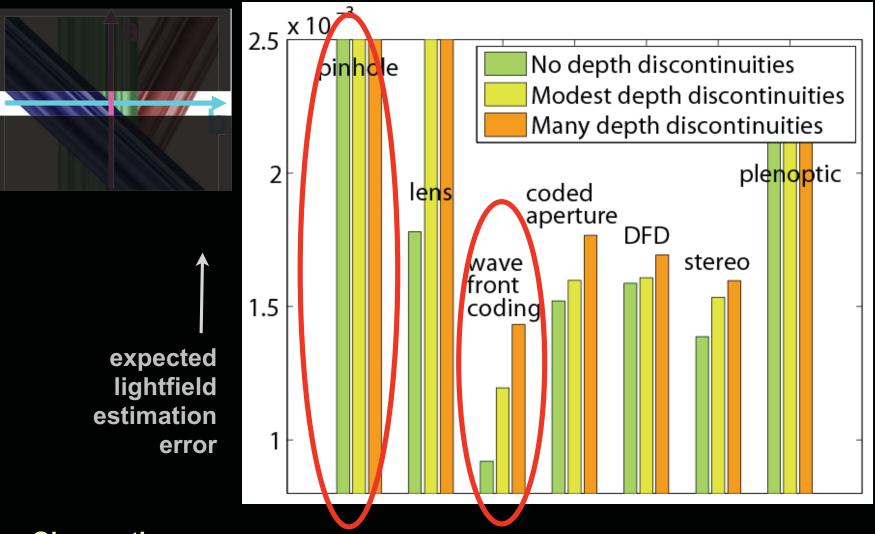
Depth-from-defocus (DFD) outperforms the coded aperture at these settings



Observation: Stereo error is less than Plenoptic

Since depth variation is smaller than texture variation, no need to sacrifice so much spatial resolution to capture directional information

1D camera evaluation- single row reconstruction



Observations:

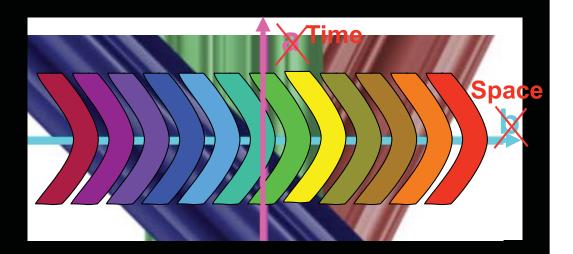
Pinhole camera- poor estimation due to noise

Wavefront coding- no depth information, but accurate reconst for a single view 33

Application: motion invariant photography

Depth invariant integration

SIGGRAPH 2008, Levin et al.



Static camera

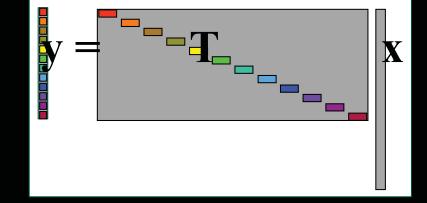
motion invariant

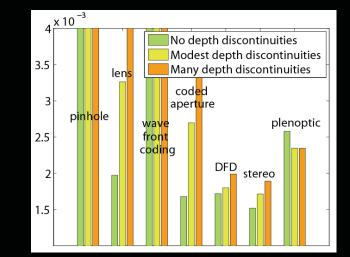
output after

speed-invariant blur allows non-blind deconvolution

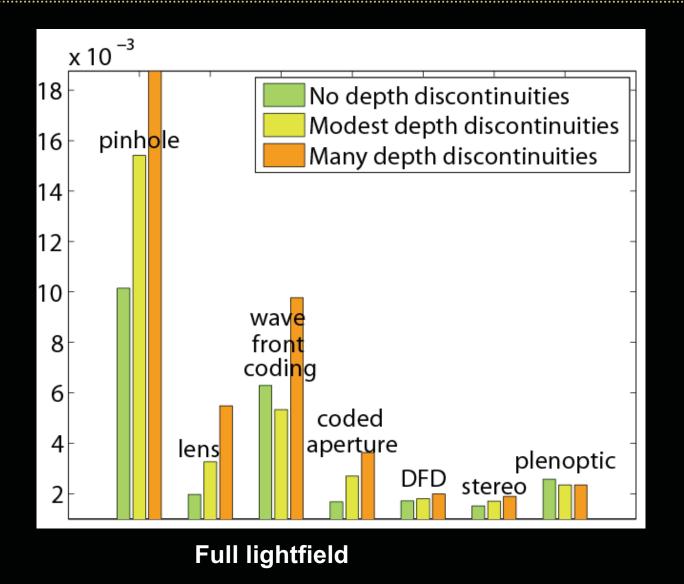
Summary: Bayesian lightfield imaging

- Model imaging as linear light field projection
- New prior on light field signals
- Camera decoding expressed as a Bayesian inference problem
- Framework and software for comparison across camera configurations, by evaluating uncertainty in light field reconstruction
- Principled novel camera design

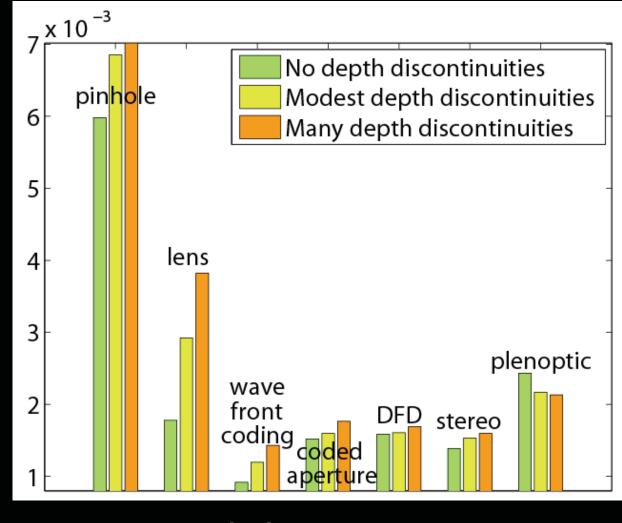




full lightfield reconstruction, unclipped plot



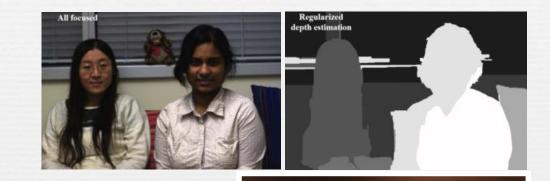
single-row reconstruction, unclipped plot

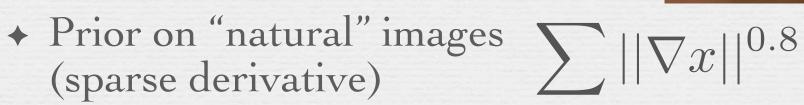


single row

Computational photography

- Reconstruct
 more information
 (light-field / depth)
- + Coding optics,





Code search

- Design constraints:
 - Binary pattern
 - Minimum hole size
 => 1mm² (due to diffraction)
 - No floating parts

 Sample patterns and optimize depth inference (KL divergence)

 Formal derivation of score function in paper

