
Cloud & Big Data 
a perfect marriage? 

Patrick Valduriez 



2 

Cloud & Big Data: the hype! 



3 

Cloud & Big Data: the hype! 



4 

•  Every one who wants to make big money 
•  Intel, IBM, Microsoft, Oracle, Google, Facebook, 

Amazon, … 

•  In a big market 
•  $18 billion in 2013, $24 billion in 2016 
•  Source: International Data Corp. (IDC)  

Behind the Hype? 



5 

•  Every one who wants to make big money 
•  Intel, IBM, Microsoft, Oracle, Google, Facebook, 

Amazon, … 

•  In a big market 
•  $18 billion in 2013, $24 billion in 2016 
•  Source: International Data Corp. (IDC)  

Behind the Hype? 



6 

•  Every one who wants to make big money 
•  Intel, IBM, Microsoft, Oracle, Google, Facebook, 

Amazon, … 

•  In a big market 
•  $18 billion in 2013, $24 billion in 2016 
•  Source: International Data Corp. (IDC)  

Behind the Hype? 



7 

•  Every one who wants to make big money 
•  Intel, IBM, Microsoft, Oracle, Google, Facebook, 

Amazon, … 

•  In a big market 
•  $18 billion in 2013, $24 billion in 2016 
•  Source: International Data Corp. (IDC)  

Behind the Hype? 



8 

•  Every one who wants to make big money 
•  Intel, IBM, Microsoft, Oracle, Google, Facebook, 

Amazon, … 

•  In a big market 
•  $18 billion in 2013, $24 billion in 2016 
•  Source: International Data Corp. (IDC)  

Behind the Hype? 



9 

Cloud & Big Data: how? 

•  But do they have the same 
goals ? 



Outline of the Talk 

•  Big data 
•  Cloud 
•  Cloud & big data 
•  Principles of data management 
•  Big data in the cloud 
•  Problems and research directions 
•  The CoherentPaaS project 



Big Data 



12 

Big Data: what is it? 

•  A buzz word! 
•  With different meanings depending on your perspective 

•  E.g. 10 terabytes is big for an OLTP system, but small for a web 
search engine 

•  A definition (Wikipedia) 
•  Consists of data sets that grow so large that they become 

awkward to work with using on-hand data management 
tools 

•  But size is only one dimension of the problem 

•  How big is big? 
•  Moving target: terabyte (1012 bytes), petabyte (1015 bytes), 

exabyte (1018), zetabyte (1021) 
•  Landmarks in DBMS products 

•  1980: Teradata database machine 
•  2010: Oracle Exadata database machine 



13 

Why Big Data Today? 

•  Overwhelming amounts of data 
•  Exponential growth, generated by all kinds of networks, 

programs and devices 
•  E.g. Web 2.0 (social networks, etc.), mobile devices, computer 

simulations, satellites, radiotelescopes, sensors,  etc. 

•  Increasing storage capacity 
•  Storage capacity has doubled every 3 years since 1980 

with prices steadily going down 
•  1 Gigabyte for: $1M in 1982, $1K in 1995, $0.12 in 2011 

•  Very useful in a digital world! 
•  Massive data => high-value information and knowledge 
•  Critical for data analysis, decision support, forecasting, 

intelligence, research, (data-intensive) science, etc. 



14 

Some Estimates* 

•  1,8 zetaoctets: an estimation for the data stored 
by humankind in 2011 

•  40 zetaoctets in 2020 
•  But 

•  Less than 1% of big data is analyzed 
•  Less than 20% of big data is protected 

✻ Source: Digital Universe study of IDC, december 2012 



15 

Big Data Dimensions: the three V’s 

•  Volume 
•  Refers to massive amounts of data 
•  Makes it hard to store, manage, and analyze (big analytics) 

•  Velocity 
•  Continuous data streams are being produced 
•  Makes it hard to perform online processing 

•  Variety 
•  Different data formats, different semantics, uncertain data, 

multiscale data, etc. 
•  Makes it hard to integrate and analyze 

•  Other V's 
•  Veracity: are the results meaningful? 
•  Validity: is the data correct and accurate? 
•  Volatility: how long do you need to store this data? 



16 

Example: Scientific Data 

●  Big data 

●  With additional characteristics 
●  Manipulated through complex, distributed workflows 
●  Important metadata about experiments and their 

provenance 
●  Mostly append-only (with rare updates) 

●  Good news as transactions are hard to deal with 



Cloud 



18 

Cloud Computing 

•  The vision 
•  On demand, reliable services provided over the Internet 

(the “cloud”) with easy access to virtually infinite 
computing, storage and networking resources 

•  Simple and effective! 
•  Through simple Web interfaces,  users can outsource 

complex tasks 
•  Data storage, system administration, application deployment 

•  The complexity of managing the infrastructure gets shifted 
from the users' organization to the cloud provider 

•  Capitalizes on previous computing models 
•  Web services, utility computing, cluster computing, 

virtualization, grid computing 
•  Major players 

•  Amazon, Microsoft, Google, IBM, Intel, etc. 



19 

Cloud Benefits 

•  Reduced cost 
•  Customer side: the IT infrastructure needs not be owned and 

managed, and is billed only based on resource consumption 
•  Cloud provider side:  by sharing costs for multiple customers, 

reduces its cost of ownership and operation to the minimum 

•  Ease of access and use 
•  Customers can have access to IT services anytime, from 

anywhere with an Internet connection 

•  Quality of Service (QoS) 
•  The operation of the IT infrastructure by a specialized, 

experienced provider (including with its own infrastructure) 
increases QoS 

•  Elasticity 
•  Easy for customers to deal with sudden increases in loads by 

simply creating more virtual machines (VMs) 



20 

Safety and Security? 



21 

Security Solutions 

•  Internal (or private) cloud (vs public cloud) 
•  The use of cloud technologies but in a private network: 

much tighter security 
•  But reduced cost advantage: the infrastructure is not 

shared with other customers 
•  Compromise: hybrid cloud (internal cloud + public 

cloud) 

•  Virtual private cloud: VPN within a public cloud with 
security services 
•  Promise of a similar level of security as an internal cloud 

and tighter integration with internal cloud security 
•  But such security integration is complex 

Much room for innovation 



22 

Cloud Architecture 

User 1 User 2 

           Cluster@site1  
Service   Compute   Storage 
 nodes      nodes      nodes 

create VMs 
start VMs 
terminate 
pay 

WS calls 

           Cluster@site2  
Service   Compute   Storage 
 nodes      nodes      nodes 

reserve 
store 
pay 

•  Like grid, but less 
distribution, more 
homogeneity and 
transparency 

•  Very different 
customers 

•  Replication across 
sites for high 
availability 

•  Scalability, SLA, 
accounting and 
pricing essential 



Cloud & big data 



24 

A Marriage of Convenience? 

•  Cloud and big data have different goals 
•  Big data aims at added value and operational 

performance 
•  Cloud targets flexibility and reduced cost 

•  But they can help each other by 
1.  Encouraging organizations to outsource 

more and more strategic internal data in 
the cloud 

2.  Get value out of it, e.g. by integrating their 
data with external data, through big data 
analytics at affordable cost 



Principles of Data 
Management 

Prentice Hall 1991 
560p 

distributed relational 
DBMS 

Prentice Hall 1999 
660p 

+ parallel 
DBMS 

Springer 2011 
850p 

+ P2P & Cloud 



26 

Application Application 

Fundamental Principle 

Provision for high-level 
services 

•  Queries (SQL, Xquery) 
•  Automatic optimization & 

parallelization  
•  Strong consistency with 

ACID (Atomicity, 
Consistency, Isolation, 
Durability) transactions  

•  Privacy, security 
•  And many others 

Logical view 

Data 

•  Data Independence: enables hiding complexity 
•  Distribution, implementation, etc. 

Data 



27 

Distributed Database – System View 

Network 

User 
Application User 

Query 

User 
Query 

DBMS 
Software 

User 
Query 

User 
Application 

DBMS 
Software 

DBMS 
Software 

DBMS 
Software 

DBMS 
Software 



28 

Distributed Database – User View (1991) 



29 

Distributed Database – user view in 2011 



30 

Big data processing 

• Exploit massive parallel processing 
• Computers with lots of processors (CPUs, GPUs), main 

memory (RAM, flash) and disk (HDD, SSD) 

•  To obtain 
•  High performance through data-based parallelism 

•  High throughput for OLTP  loads 

•  Low response time for OLAP queries 

•  High availability and reliability through data replication 

•  Extensibility of the architecture 
•  With speed-up, scale-up, scale-out 



31 

Data-based Parallelism 

•  Inter-query 
•  Different queries on the same 

data 
•  For concurrent queries  

•  Inter-operation 
•  Different operations of the 

same query on different data 
•  For complex queries 

•  Intra-operation 
•  The same operation on 

different data 
•  For large queries 

Op3 

Op1 Op2 

Op 

D1 

Op 

Dn 

… 

D1 D2 

Q1 Qn 

D 

…



32 

- Data partitioning 
- Distributed transactions 
+ Cost/performance 
+ Scales to XLDB 

M 

P … P 

M 

P … P 

M 

P … P 

M 

P … P 

-  Disk interconnect 
-  Cache coherency 
+ Simple for admins 
+ Scales to VLDB 

Shared-disk vs Shared-nothing 



33 

OLAP vs OLTP Workloads 

•  Online Transaction 
Processing (OLTP) 
•  Operational databases of 

average sizes (TB), write-
intensive 

•  ACID transactions, strong 
data protection, response 
time guarantees 

•  Corporate data can't get 
lost or stolen 

•  Shared-disk preferred 

In the cloud: OLAP easier, OLTP more difficult but doable 
•  e.g. UCSB ElasTraS, MS SQL Azure, MIT Relational Cloud 

•  Online Analytical 
Processing (OLAP) 
•  Historical databases of 

very large sizes (PB), 
read-intensive 

•  Relaxed ACID properties 
•  Sensitive data can be 

anonymized 
•  Shared-nothing cost-

effective 



34 

Data Partitioning 

Keys Values 

•  Vertical partitioning 
•  Basis for column-oriented DBMS 

(e.g. MonetDB, Vertica): 
efficient for OLAP queries 

•  Easy to compress, e.g. using 
Bloom filters 

A table 

•  Horizontal partitioning 
(sharding) 
•  Basis for parallel DBMS 

and MapReduce 
•  Shards can be stored 

and replicated at 
different nodes 



35 

Replication and Failover 

•  Replication 
•  The basis for fault-tolerance 

and availability 
•  Have several copies of each 

shard 

•  Failover 
•  On a node failure, another 

node detects and recovers 
the node’s tasks 

Client 

Node 1 

connect1 

Node 2 Ping 

connect1 



36 

Parallel Query Processing 

1.  Query parallelization 
•  Produces an optimized 

parallel execution plan 
•  Based on partitioning 

2.  Parallel execution 
•  Relies on parallel main 

memory algorithms for 
operators 

•  Use of hashed-based 
algorithms 

Select … from R,S 
where …group by… 

Parallelization 

Sel. 

R1 R2 

Sel. 

R3 R4 

Sel. Sel. 

Join Join Join Join 

S1 S2 S3 S4 

Grb Grb Grb Grb 

Grb 



Big Data in the Cloud 



38 

Problem and solution 

•  Why not relational DBMS? 
•  "One size fits all" has reached the limits 
•  Not designed for loosely structured data 

•  Cloud users and application developers 
•  In very high numbers, with very diverse expertise but very 

little DBMS expertise 

"New" data management solutions 
•  Distributed file systems: GFS, HDFS, … 
•  NOSQL systems: Amazon SimpleDB, Google Base, Bigtable, 

Hbase, MongoDB, etc. 
•  Parallel programming frameworks: MapReduce, Dryad 

And new architectures 
•  BigTable/GFS, Hbase/HDFS, MapReduce/GFS, MapReduce/

HDFS 



39 

NOSQL (Not Only SQL): definition 

•  Specific DBMS, for web-based data 
•  Specialized data models 

•  Principle: No one size fits all 
•  Key-value, table, document, graph 

•  Trade relational DBMS properties 
•  Full SQL, ACID transactions, data independence 

•  For  
•  Simplicity (schemaless, basic API) 
•  Scalability and performance 
•  Flexibility for the programmer (integration with programming 

language) 

•  NB: SQL is just a language and has nothing to do 
with the story 



40 

NoSQL Approaches  

•  Characterized by the data model, in increasing 
order of complexity: 

1.  key-value: DynamoDB, Cassandra, Voldemort 
2.  big table: Bigtable, Haddop Hbase, Accumulo 
3.  document: 10gen MongoDB, Expresso 
4.  graph: Neo4J, Pregel, DEX 

•  What about object DBMS or XML DBMS? 
•  Were there much before NoSQL 
•  Sometimes presented as NoSQL 
•  But not designed for scaling 



41 

Key-value store: DynamoDB 

•  The basis for many systems 
•  Cassandra, Voldemort 

•  Simple (key, value) data model 
•  Key = unique id 
•  Value = a small object (< 1 Mbyte) 

•  Simple queries 
•  Put (key, value) 
•  Get (key) 

•  Replication and eventual consistency 
•  If no more updates, the replicas get mutually consistent 

•  No security 
•  Assumes the environment is secured (cloud) 

•  High availability, performance and scalability using P2P 
techniques in a SN cluster 

•  Integration with MapReduce 



42 

Google Bigtable 

•  Database storage system for a SN cluster 
•  Uses GFS to store structured data, with fault-

tolerance and availability 

•  Used by popular Google applications 
•  Google Earth, Google Analytics, Google+, etc. 

. 

. 

. 

K1   A11    A12                 …             A1n 

K2   A21    A22                 …             A2n 

 

 

Km  Am1   Am2                 …            Amn 

 

M and n very big 

•  The basis for popular Open Source 
implementations 
•  Hadoop Hbase on top of HDFS (Apache & Yahoo) 

•  Specific data model that combines aspects of 
row-store and column-store DBMS 
•  Rows with multi-valued, timestamped attributes 

•  Dynamic partitioning of tables for scalability 



43 

Bigtable Language 

•  No such thing as SQL 
•  Basic API for defining and manipulating tables, 

within a programming language such as C++ 
•  No impedance mismatch 
•  Various operators to write and update values, and to 

iterate over subsets of data, produced by a scan 
operator 

•  Various ways to restrict the rows, columns and 
timestamps produced by a scan, as in relational 
select, but no complex operator such as join or union 

•  Transactional atomicity for single row updates only 



44 

Document DBMS: MongoDB 

•  Objectives: performance and scalability  as 
in (key, value) stores, but with typed values 
•  A document is a collection of (key, typed value) 

with a unique key (generated by MongoDB) 

•  Data model and query language 
•  Based on the Binary JSON format 

•  No schema, no join, no complex transaction 
•  Sharding, replication and failover 
•  Secondary indices 
•  Integration with MapReduce 



45 

Graph DBMS: Neo4J 

•  Applications with very big graphs 
•  Billions of nodes and links 
•  Social networks, hypertext documents, 

linked open data, etc.  

•  Direct support of graphs 
•  Data model, API, query language 
•  Implemented by linked lists on disk 
•  Optimized for graph processing 
•  Transactions 

•  Implemented on SN cluster 
•  Asymmetric replication 
•  Graph partitioning 



46 

NoSQL versus Relational 

•  The techniques are not new 
•  Database machines, SN cluster  
•  But very large scale 

•  Pros NoSQL 
•  Scalability, performance 
•  APIs suitable for programming 

•  Pros Relational 
•  Strong consistency, transactions 
•  Standard SQL, many tools (OLAP cubes, BI, etc.) 

•  Towards NoSQL/Relational hybrids? 
•  Google F1: “combines the scalability, fault tolerance, 

transparent sharding, and cost benefits so far available only 
in NoSQL systems with the usability, familiarity, and 
transactional guarantees expected from an RDBMS” 



47 

MapReduce 

•  Parallel programming framework 
•  Invented by Google, proprietary (and protected by software 

patents) 
•  For data analysis of very large data sets 

•  Highly dynamic, irregular, schemaless, etc. 
•  SQL or Xquery too heavy 

•  New, simple parallel programming model 
•  Data structured as (key, value) pairs 

•  E.g. (doc-id, content), (word, count), etc. 
•  Functional programming style with two functions to be 

given by the programmer: 
•  Map(key, value) -> ikey, ivalue 
•  Reduce(ikey, list (ivalue)) –> list(fvalue) 

•  Implemented on GFS on very large clusters 
•  The basis for popular implementations 

•  Hadoop, Hadoop++, Amazon MapReduce, etc. 



Problems and Research 
Directions 



49 

Problems 

•  ACID properties abandoned within and across 
data stores 

•  Wide diversification of APIs and divergence of the 
programming paradigms used for different types 
of data 

•  This makes it very hard to develop new cloud 
applications and services with correct semantics, 
requiring tremendous programming effort and 
expertise 



50 

Research Directions 

•  Basic techniques are not new 
•  Data partitioning, replication, indexing, parallel hash 

algorithms, etc. 
•  But need to scale up 

•  Much room for research and innovation 
•  Big data integration 
•  Big data analytics 
•  Data consistency and transaction support 
•  Data privacy and security 
•  Data-oriented scientific workflows 
•  Uncertain data management 
•  Data semantics, recommendation, etc. 



CoherentPaaS 



52 

The CoherentPaaS Project 

•  European FP7 IP 2013-2016 (€5 million) 
•  U. Madrid, INRIA Zenith, FORTH, ICCS, INESC 
•  MonetDB, QuartetFS, Sparsity, Neurocom, Portugal 

Telecom 

•  Goal: a cloud PaaS with 
•  A rich set of cloud data management technologies 
•  A common query language to unify the programming 

models of all systems 
•  Holistic coherence across data stores using a scalable, 

transactional management system 



53 

Common Query Language: objectives 

•  Design an SQL-like query language to query 
multiple databases (SQL, NoSQL) in a cloud 
•  Common data model 
•  Common query language 

•  Design a query engine for that language 
•  Compiler/optimizer 

•  To produce an execution plan 

•  Query runtime 
•  To run the query, by calling the databases and integrating the 

results 

•  Validate with a prototype 
•  With multiple DBs: MonetDB, Dex, MongoDB, etc. 



54 

Our Design Choices 

•  Data model: schemaless, table-based  
•  With rich data types 

•  To allow computing on typed values 

•  No global schema and schema mappings to define 

•  Query language: functional-style SQL* 
•  Can represent all query building blocks as functions 

•  A function can be expressed in one of the DB languages 

•  Function results can be used as input to subsequent 
functions 

•  Elegant way to pass data between different DBs 

 
✻  P. Valduriez, S. Danforth. Functional SQL, an SQL Upward Compatible 

Database Programming Language. Information Sciences, 1992. 
✻  C. Binnig et al. FunSQL: it is time to make SQL functional. EDBT/ICDT 

Conference, 2012.  



Cloud & Bigdata: what's next ? 


