Swarms: First Class Citizens in the Future Internet

Don Towsley UMass - Amherst Vision

Information organized in one or more swarms End hosts efficiently find, obtain information, content using simple local policies

Q: what should network provide?

a traffic-centric history of the Internet

an architecture to support swarms

The web: 1995

- 1993 academic traffic
- □ 1995 web appears

news

WWW email

1995

Rise of the Web: 2000

- □ 1995 web shows up
- 2000 almost 75% web traffic
 - Napster, Gnutella just starting

2000

Rise of P2P: 2004

- 2000 almost 75% web traffic
- 2004 67% P2P traffic
- over half BitTorrent
 (BT)
 - BT canonical swarm

P2P

OLE

Swarm (BT) Tutorial (Cohen)

- Iarge file (~GBs), divided into small pieces (256KB).
- peers initially given random set (50+) peers/servers
- peers fetch from 4 or more random peers/servers

peer 88

Peer reselection

peer connected to four peers at a time
 every 30 seconds
 drops peer with lowest download rate

 \odot selects new peer (out of 50+) randomly

multi-purpose mechanism

- O bootstraps new peers
- o connectivity
- balances loads among peers] lower delays

Peer reselection

peer connected to four peers at a time
 every 30 seconds
 drops peer with lowest download rate
 select new peer (out of 50-100) randomly

multi-purpose mechanism

- bootstraps new clients
- connectivity
- balances loads among peers] lower delays
- \circ reduces need for traffic engineering¹⁰¹⁰

Ingredients to success of BT

multiple connections / active downloads

random peer reselection
Robust to failures, changes
in traffic patterns

Multi-source data transport

provide requestor "set" of sources requestor balances load across sources/ paths exhibits desirable load balancing properties BT transport mode • TCP (connection) rate

1212

Benefits of multi-source transport

- capacity increases with number of sources per requestor
- two sources + random resampling achieves same capacity as using many sources
- BT uses 4 sources + resampling

maximum network

capacity many sources

2 sources + resampling

Rise of on demand video: 2007

P2P traffic shrinks from 67% to 37%

fraction of swarm traffic www swarm fraction shrinks
P2P

Why?

- availability of inexpensive on demand video thru WWW
- 10% YouTube traffic

news -groups 2007

1414

OLE

Current trends

- swarm traffic growing in absolute terms
- shrinking in relative terms
- rest of traffic single source, path
- trend more prominent in developed countries

Can YouTube benefit from swarming?

Click to edit Master subtitle style

Without introducing BT?

Joint routing/rate control

Consider source-destination pair

provide session "set" of paths

1818

session balances load across paths

well studied within Kelly optimization-based framework

Joint rate/route control

- similar load balancing properties to multisource
- increasing no. paths increases capacity, robustness
- two paths with random replacement of worst as good as using all paths

but YouTube replicates

can add multi-source

Multisource + multipath

capacity increases with number of maximum network o paths per session ○ sources per session two sources + random source/path resampling achieves same capacity as many sources, paths high tolerance to

capacity multisource + multibath two sources + resampling 2 sources + src/path resampling

- controller design
- path/source selection
- □ scheduling
- Iocating content
- where, when, what to replicate
- security

Controller design

- falls within Kelly optimization-based framework
- many designs
 - different fairness criteria
 - convergence, stability, ...
- receiver oriented design
- IETF efforts on multipath rate control

Source/path selection

Sources • tied to finding content - defer to later

paths

multihoming, increasingly common
 supported by IPv6

no coordination required

Scheduling

Q: what to obtain from which source?

- A: coding -
 - divide content into chunks
 - fetch random linear combinations of chunks from any source
 - chunks solve set of linear equations
 - combinations precoded, coded on the fly

You Tube

Naming, addressing

- name is the address (Jacobsen)
 - Named Data Networking (NDN) project (Zhang, Jacobsen)
- avoids need for name-address translation
- handles mobility
- hierachical names
 - (e.g., levels of interest, replication)
- route setup ü content search

Routing functionality (Jacobsen)

IP router

Finding content

simple "swarm-like" techniques
 random walks
 expanding ring search

third party search engines
 google
 bing

Random walk search

- propagate query randomly through network
- halt when found, or hit max. TTL

Scalability in network size:

- O(1) communication overhead
- Inv delave

Random walk performance

	Popular	Unpopular
Many	overhead O(1),	overhead O(1),
replicas	search time O(1)	search time O(1)
Few	overhead O(n),	overhead O(1),
replicas	search time O(n)	<mark>search time O(n)</mark>

Long delays, high overhead for less replicated content

Multiple RW search

initiate k random walks
halt once content fou

3535

tune k to popularity

Multiple random walk performance

	Popular	Unpopular
Many	overhead O(1), search	overhead O(1), search
replicas	time O(1)	time O(1)
Few	<mark>overhead O(n)</mark> , search	overhead O(1), search
replicas	time O(log2 n)	time O(log2 n)

How do we reduce overhead?

Search times

couple no. copies to popularity popular content ü many copies

and/or

introduce breadcrumbs
 entries in forwarding table

Breadcrunbs

Search: research questions

Replication

when?

o always? randomly?

 partial replication?
 random coding + multisource permits this

Content search: summary

swarming techniques
 well defined searches
 handles most searches

Google model
 complex searches
 added value searches
 third party (\$\$\$)

hybrids?

secure content - not connection
 convert randomization into security
 "dynamic secrets"
 code so that requestor must obtain pieces
 from a minimum number sources

A network swarm architecture

End hosts

 network control
 simple, robust, local randomized policies

Networks

- o rich connectivity
- content replication
- sets of paths as needed

swarms

Parting thoughts

swarms simplify network management/ control

- o network responsibility: rich connectivity
- infrastructure to support swarms
- applies to
 - real-time, multimedia
 - o mobile, wireless

Parting thoughts

- details to work out
 - technology for swarms
 - infrastructure to support swarms
 - content replication, searching
 - o coding
 - o security
- economics of swarms
- rich set of PhD research problems

considerable latitude for architecture and

The end

Thanks and questions

Slides (soon) available at http://gaia.cs.umass.edu/towsley/INRIA-11.pdf