Super-resolution fluorescence microscopy systems compared.

First of all, thank you to the Committee for giving me the opportunity to come here and learn so much from you. A personal view, concentrating on limitations related to too few photons and specimen refractive index heterogeneity It is illustrated by dozens of stolen images. My thanks to all of their owners, in particular to Stephan Hell and Jennifer Lippincott-Schwartz.

> Jim Pawley JBPawley@wisc.edu

The past decade has seen the introduction of a number of fluorescence light microscopy techniques that permit one to surpass the Abbe Resolution limit.

Although the resulting images are quite similar, differences in the operational details of these techniques can make them more or less suitable for specific types on biological studies.

It is my intent to highlight and explain these differences at a fairly basic level...

Assumptions:

- that the importance and utility of fluorescence microscopy is generally recognized and accepted.
- that what we really want is to be able to do living cell fluorescence microscopy better. In Languedoc, I understand that you all search for the Holy Graíl. Perhaps the Cathars have ít?

"The holy grail is to see dynamically imaged living cells noninvasively, to see at the level of an individual protein molecule, and to see how the molecules interact in a cell," Betzig says. "It's many years away, but you can dream about it.*"

Is this reasonable?

- Microscopy is about making images of small things.
 To form an image, a flow of radiation must strike the specimen, where it is modulated (differentially scattered?) by the structural features, producing contrast (and perhaps damage?).
- These scattered/emitted particles are then detected so as to form an image of the specimen.

• BETTER LIVE-CELL MICROSCOPY, involves getting more useful information w/o producing excessive damage.

What do we mean by better?

- Less damage to the specimen.
- More useful information/detected photon.

What's new?

- There are a lot of new contrast modes:
 - SHG, polscope, FLIM, FRET, CARS etc.
- New spectrometries:
- New lasers, scanning systems, photodetectors.
- Adaptive optics(!)

What makes information useful?

- Better spatial resolution?
- Better time resolution?
- More informative contrast mechanisms
 - ◆ FCS, pol-scope, SHG, THG, 3DFSR...
 - Sílver cluster dyes,
 - Switchable fluorophors: BIPS, Merocyanine
- Being able to follow more cells (field of view).
 - HCS: computer aided image analysis
 - SPIM etc.

Today, I will concentrate on methods that provide higher spatial resolution when imaging living cells.

We have many such methods:

To overcome Abbe, one must saturate something:

- Stimulated Emission Depletion Microscopy (STED:Hell et al. MPG, Goettingen)
- Photoactivated Localization Microscopy (PALM:Betzig & Hess, HHMI, Janelia Farms)
- Stochastic Optical Reconstruction Microscopy (STORM:Rust, Bates & Zhuang, HHMI, Harvard)
- Incoherent Interference Illumination, Incoherent Illumination detection (15M: Gustafsson, UCSF)
- Saturated structured Illumination microscopy (SSIM:Heintzmann, ICL).

I will now give brief descriptions of these ...

They all share certain characteristics:

- They use fluorescence as the basic contrast mechanism \Rightarrow deposits energy \Rightarrow damage.
- Higher spatial resolution implies both more and smaller voxels.
- i.e., More photons must be detected from the same number of dye molecules:

 \Rightarrow Stable dyes needed.

But there are also important differences.

As the optics of these methods have been much discussed, I will concentrate my discussion to limitations related to:

- the detectors used
- rate at which data is accumulated
- the signal levels needed
- the effect of specimen RI.

As I do not own all these systems, most of my comments are inferences from published data.

Widefield HRLM techniques*

REVIEW: Widefield (WF) Deconvolution

In WF fluorescence, the entire thickness of the specimen is exposed to the full intensity of the exciting light. This situation is ameliorated by the high QE of the CCD. Copyright Jim Pawley, 2009

Q: Can one "Put the photons back where they come from?"

Suppose that, under WF illumination conditions, a CCD with Nyquist-sized pixels (0.1 μ m at sample) records a total of 10k photons from a point feature in each image of the 3D stack.

In-focus: 10,000 photons over ~12 pixels => 830p/pix

Assuming a large NA lens ($\alpha = 60^{\circ}$) and simple geometrical optics,* by the time the point is 1 μ m out of focus, these photons will be spread over a circle having an area of ~10 μ m² or ~1,000 pixels.

If the intensity is spread evenly over this circle, then the detected signal level from the now-out-of-focus feature drops to ~10 photons/pixel. As this is only slightly more than the RMS read noise of the CCD, it is hard to see how the detection of this out-of-focus light can provide much useful structural information.

*an admitted oversimplification

A: Only some of them can be "put back."

Structured Illumination Microscopy (SIM). Start with ordinary WF 3D Iterative deconvolution and add structures illumination patterned at the $\lambda/2$.

The resulting image represents the specimen structure multiplied by the sinusoidal illumination structure, rather like a Moiré pattern.

Such an image contains spatial frequencies up to 2x higher than those present with uniform illumination. But to obtain a uniform response, -9 images must be recorded: 3 phase positions and 3 angles.

Non

Mats Gustafsson

The results, enlarged so that you can see them...

(a) Pristine object intensity

(c) Structured illumination recovered image with 75% superresolution

(d) Image with uniform illumination through 75% larger pupil Making structured illumination by interference (for TIRF).

M. Gustafsson, J. Microsc., **198**, 82 (2000) Actin in fixed 3T3 fibroblast cell

Although extracting this information requires recording and processing at least 9 images/plane (3-5 positions of the pattern in 3 orientations, i t produces a significant resolution gain. Even greater improvement can be obtained by changing the sine-wave excitation to square-wave excitation, as can be approximated by using brighter illumination to saturate the singlet-state fluorescence process.

This produces yet higher harmonics in the resulting images. (It can also be thought of as only NOT exciting near zeros.)

However, because these harmonics are only present at low intensity (contrast), one needs very good S/N to detect them.

In addition, this technique requires images to be recorded with a much finer separation of the phase of the illumination pattern.

And, saturating the singlet state requires very bright illumination.

For instance, common dyes approach singlet-state saturation when about ImW of laser power is focused into a diffraction-limited spot by a high-NA objective.

Saturating the singlet-state over the entire field of view with structured illumination requires either very high excitation power levels (watts or kW)

Such power levels can only be applied without vaporizing the specimen using a pulsed laser, a practice that significantly slows the rate at which data can be obtained.

Alternatively, one might use special dyes that remain in the excited state for a long time. (i.e., very long fluorescence decay times). However, such dyes are usually especially prone to photodamage.

To optimize axial resolution, add axial interfence: I⁵M Incoherent Interference Illumination Incoherent Interference detection

77

opposed objectives -> optimal axial resolution

M.G.L. Gustafsson, D.A. Agard, J.W. Sedat J. Microsc. 195, 10 (1999)

CCD

optical sectioning, microtubules, PtK2 cell xy plane

Advantages: High-resolution 3D, 2-color, widefield image

Mouse C2C12 myoblast nucleus. Alexa Dyes: 1 Jothar Schermelleh/Peter Carlton/Science: 320;1332 (2008)

25 Lothar Schermelleh/Peter Carlton/Science: 320;1332 (2008)

The bad news: - many images: bleaching slow: (dead?) - sensitive to motion of specimen. - "thinnish" samples - difficult alignment - laser wavelengths

Applied Precision OMX V2 with DeltaVision

Other, Línear 15M concerns ínclude:

- Requires 4pi setup: 2 opposing objectives, aligned to $\lambda/10$ in xyz.
- Specimens need to have a uniform Refractive Index (RI).
- The need to record >100 frames/focus plane limits data rate.
 - May cause bleaching but is sensitive to bleaching.
 - Needs high frame-rate CCDs: greater noise.
 - Significant computational requirements.
 - Poisson noise created by bright, out-of-focus features may obscure data.

In Saturable Structured Illumínation Microscopy (SSIM) or saturable 15M, concerns include:

- Same as línear 15M plus...
- Although it requires saturation, and saturation increases the bleach rate, the technique is sensitive to bleaching.
- Full field, singlet saturation involves a lot of power.
 - \Rightarrow slow laser pulse rate \Rightarrow
 - very low duty cycle.
 - Live-cell work unlikely

Verdíct

- As always, there is a trade-off.
 You can use this equipment to image moving cells in 3D, but only at close to "normal" (Abbe) resolution.
- Highest resolution will require fixed cells to reduce specimen movement and to increase fading resistance.

Photoactivation location microscopy (PALM)

Jennifer Lippincott-Schwartz

PALM and STORM: Start with PhotoActivatable (PA) dyes

PHOTOACTIVATABLE FLUORESCENT PROTEINS

Although the Diffraction Limit is large,

microscope point spread function

GFP 2.5 nm 100 nm

NA = 1.4 $\lambda_o = 500$ nm

Slide from Lippincot-Schwartz

we can still localize single fluorescent molecules

molecular motor: myosin One molecule at a time Slide from Lippincot-Schwartz

PALM in action

- Molecules in each image must be far enough apart to localize.
- Use continuous activation and excitation to build composite.
- Apply the results to look at organization + single-molecule dynamics

Interestingly, over thirty years ago, a similar system was used to improve the spatial resolution of a video-rate image intensifier system used in the TEM. (Herrmann, Krahl Rust and Ulrichs, Optik, 44, (1976)-4, pp 393-412: see figure 7)

36

Slide from Lippincot-Schwartz
PALM-TIRF Instrumentation

electron multiplying CCD camera

| = 405 nm activation | = 491 or 561 nm excitation

Living Cell (n = 1.33 - 1.37

Fluorophores Fluorophores Cel

Total Internal Reflection

molecules can be imaged.

Fluorescence (TIRF):

reduces background

photons so single

Glass Slide (n = 1.518)

Evanescent

Laser Excitation Excited

Reflection Angle

Membrane

Interface

Slide from Lippincot-Schwartz 37

Total Internal Reflection microscopy limits imaging to range \leq 100nm distance from the coverslip

PALM Super-Resolution Organization

Conventional TIRF

PALM Image

Constructed by summing position probability gaussians determined for all localized molecules in data stack

Aggregate of 50 nm polystyrene beads coated with PA-FP Kaede

PALM Imaging of fixed cells expressing PA-FPs

1.0 μm

Focal adhesions, FoLu cell, dEosFP-tagged vinculin

PALM of Endoplasmic Reticulum

tdEos-Reticulon1

0.00000 0.00445 0.01412 Total Fluor Molecule Probability /nm²

Zoom of PALM of ER

tdEos-Reticulon1

TO SEE INTRACELLULAR COMPONENTS.

CUT A PHYSICAL SECTION.

PLACE IT AT THE COVERSLIP SURFACE.

Rachid Sougrat

This also facilitates Correlative PALM/TEM.

PALM

Slide from Lippincot-Schwartz

TEM

PALM/TEM overlay

Mitochondrial matrix, COS-7 cell dEosFP-tagged cytochrome-c oxidase targeting sequence

E. Betzig, et al., Science **313**, 1642 (2006)

Higher mag of inset. Compare the number of labels. PALM TEM

Mítochondríal matríx, COS-7 cell dEosFP-tagged cytochrome-c oxídase targeting sequence

Dynamics: Single Particle Tracking

<u>Single Particle Tracking + PALM:</u>

- TIRF microscopy (1.65 NA)
- Eos-FP
- 10,000 images
- 20 frames/sec
- require molecules move < 300 nm

Manley et al, Nature Methods (2008)

Create spatial maps of SPT: sptPALM

Dynamics: Single Particle Tracking

SINGLE PARTICLE TRACKING WITH PALM

VSVG-EosFP

Gag-EosFP

Single molecule tracks
High-density information on dynamics

http://lippincottschwartzlab.nichd.nih.gov/pdf/Manley_NatMeth2008.pdf

Probing the dynamics of single actin filaments with sptPALM

Single actin-Eos molecules imaged with TIRF Images acquired at 1 sec intervals Video displayed 30x real time

The Principle of iPALM

Harald Hess + Gleb Shtengel

Resolution Comparison

Z (axial)

Confocal

PALM iPALM

10 nm axial 20 nm x,y

Imaging with iPALM

STORM is like PALM but uses probes that are photoswitchable rather than photoactivatable.

And the third dimension is obtained using intentional astigmatism, rather than interference.

Xiaowei Zhuang, HHMI and Harvard

55

In PALM/STORM, concerns include:

- Works only with un-cageable or photoswitchable dyes.
- As low background is essential, it works better in TIRF/2D.
- Data rate limited by need to prevent spots overlapping.
 - Higher total data rate for larger field of view but small CCDs readout faster.

- Needs high frame-rate EM-CCDs: greater CIC noise. Image from Lippincot-Schwartz
- Significant computational requirements
- Although PALM requires bleaching: \Rightarrow photoproducts \Rightarrow phototoxicity, at least it bleaches only a single plane and each molecule is imaged only once.

REVIEW: Confocal microscopy: Produces optical sections (and eventually 3D STACKS).

However, there is a snag! This setup gives an image of only one point. To get a useful 2D/3D image, one must scan the beam/detector system. AND to get a comparable image in the same time, the light intensity in the spot must be ~100,000x more than WF.

Scanned HRLM techniques

Stephan Hell

Stímulated emíssion depletion microscopy (STED)

d= J 2maina VI+JIJs

First, about how lasers work...

STED microscope

and it works at near-normal scan speeds $\int \frac{1}{2} \int \frac{$

Lars Kastrup, MPI BPC Rebecca Medda, Dominik Wildanger,

A neuron imaged by confocal microscopy (left) and by STED (right).

61

What is more, you can get accurate photon counts.

Confocal intensity, 0-50 photons/15µs

STED intensity, 0-15 photons/15µs

Hein, Willig and Hell PNAS, 2008

Subdiffraction resolution fluorescence imaging of Citrine-labeled microtubules inside a living PtK2 cell. In both the confocal reference and the STED counterpart, excitation was performed in the pulsed mode with 7.6 μ W of time-averaged focal power. In the STED mode, a STED beam of 31mW average power was added, which improves the lateral resolution inside the living cell from 180 to 60 nm. (Scale bar, 2μ m.)

2-color STED

FIGURE 4 Mitochondria with labeled F_1F_0ATP synthase (green) and TOM complex (red); reverted antibody labeling as compared to Fig. 3. Again, the TOM complex appears as clusters; unlike the confocal (*left*), the STED recording (*right*) resolves the TOM complex clusters. In both recordings, the raw data were subject to a linear deconvolution (*LD*) with the respective PSF. (*Inset*) Low magnification image. Scale bar, 200 nm.

Note scale bar size.

Figure 7. Focal spots (PSF) of the twocolor STED microscope, measured by recording the scattered light from a subdiffraction-sized bead. Excitation PSF for the A) green and B) red channel are overlapped with the corresponding doughnut-shaped STED-PSF shown in (C) and (D). The numbers at the arrows indicate the FWHM of the diffraction maximum (A, B) or the diffraction doughnut minimum (C, D).

Although most STED has been done using optics optimized for 2D, it is also possible to do 3D, 2-color STED

Cellular powerhouse: These images of a cellular organelle called the mitochondrion were taken with the highest-resolution 3-D light microscope yet developed. Researchers at the Max Planck Institute, in Germany, have used the microscope to image individual, fluorescently labeled protein clusters in the mitochondria of live cells (below) and to combine them to form 3-D images (above). Credit: Nature Methods/Stefan Hell

As there is no requirement to avoid imaging overlapping PSFs,

Westphal, Rizzoli, Lauterbach, Kamin, Jahn, Hell; Science 2008

you can do STED fast.

Real time, 28 fps, total of 140 frames

Movie from Stephan Hell, Science WWW

Fig. 1. Real-time STED microscopy resolves single synaptic vesicles in living neurons. Images of a short fragment of axon labeled with mouse anti-synaptotagmin and Atto647N-labeled anti-mouse Fab fragments, in confocal mode (left) and in STED mode (center and right). The increased resolution in the STED image and the reappearance of vesicles in subsequent frames can be seen (three arrowheads indicate relatively stable vesicles; also, many other spots can be recognized in both frames). Smoothing helps to identify super-resolved vesicles in the STED images (right). STED puts considerable stress on the dye molecules and consequently the most successful studies have been carried out using specific dyes...

Dye name (Manufacturer / Distributor)	Exc. Wavelength	Exc. Pulse Length	STED Wavelength	STED Pulse Length	Repetition Rate	Avg. STED Power
ATTO 532 (ATTO-TEC GmbH)	470 nm	100 ps	615 nm	200 ps	80 MHz	14 – 18 mW
ATTO 532 (ATTO-TEC GmbH) ATTO 532 (ATTO-TEC GmbH)	470 nm 488 nm	80 ps 100 ps	603 nm 615 nm	280 ps 200 ps	250 kHz 80 MHz	0.5 mW 16 mW
Chromeo 488 (Actif Motif)	488 nm	140 ps	602 nm	~ 160 ps	250 kHz	0.6 mW
Chromeo 488 (Actif Motif)	488 nm	< 100 ps	590 nm	200 - 300 ps	80 MHz	40 mW
DY-485XL (Dyomics GmbH)	488 nm	< 100 ps	647 nm	~ 200 ps	72 MHz	(20 + 3) mW
GFP	490 nm	100 ps	575 nm	200 ps	80 MHz	7.2 mW
ATTO 565 (ATTO-TEC GmbH)	532 nm	~ 90 ps	640 - 660 nm	~ 90 ps	1 – 2 MHz	
ATTO 565 (ATTO-TEC GmbH)	532 nm	CW	647 nm	cw	cw	114 mW
MR 121 SE (Roche Diagnostics)	532 nm	10 ps	793 nm	107 ps	76 MHz	10.4 mW
NK51 (ATTO-TEC GmbH)	532 nm	< 100 ps	647 nm	~ 200 ps	72 MHz	(20 + 3) mW
Sulfonated & rigidized rhodamine derivatives (V. Boyarskiy, NanoBiophotonics, MPI Göttingen)	532 nm	100 ps	640 nm	~ 300 ps	80 MHz	
Pyridine 2 / LDS 722 (Exciton, Radiant Dyes GmbH)	554 nm	250 fs	760 nm	13 ps	76 MHz	
Pyridine 2 / LDS 722 (Exciton, Radiant Dyes GmbH)	554 nm	250 fs	745 nm	50 – 200 ps		12.2 mW
RH 414 (Invitrogen Corp.)	554 nm	250 fs	745 nm	13 ps	76 MHz	8.78 mW
ATTO 590 (ATTO-TEC GmbH)	570 nm	~ 90 ps	690 - 710 nm	~ 90 ps	1 - 2 MHz	
ATTO 633 (ATTO-TEC GmbH)	630 nm	~ 90 ps	735 - 755 nm	~ 90 ps	1 – 2 MHz	
ATTO 633 (ATTO-TEC GmbH)	635 nm	100 ps	750 nm	~ 200 ps	76 MHz	
ATTO 647N (ATTO-TEC GmbH)	635 nm	CW	750 nm	cw	CW	423 mW
ATTO 647N (ATTO-TEC GmbH)	635 nm	100 ps	780 nm	300 ps	250 kHz	
JA 26 (K.H. Drexhage, Siegen University)	635 nm	68 ps	781 nm	303 ps	40 MHz	10.1 mW
JA 26 (K.H. Drexhage, Siegen University)	635 nm	68 ps	775 nm	300 ps	76 MHz	
JA 26 (K.H. Drexhage, Siegen University)	635 nm	68 ps	780 nm	300 ps	80 MHz	90 – 100 mW
JA 26 (K.H. Drexhage, Siegen University)	637 nm	54 ps	778 - 785 nm	303 ps	40 MHz	

67

Good features of STED:

- Almost unlimited improvement in xy-resolution possible.
- Can work in 2 colors.
- Illumination need only come from one side.
- Phase plate can be optimized to improve z-resolution.
- 3D imaging possible.
- Data rate sufficient to permit "video-rate" imaging.
- Speed can be further increased by using many STED spots but this will also increase total light input/damage.
- Hí-QE Avalanche photo-díode photodetector used.
- Relatively immune to RI inhomogeneity.

In STED, the matters of concern include:

- Optimal dyes are needed: work in near-IR and must have low crossing to triplet state, and significant Stokes shift.
- Will the very small effective PSF contain enough dye?
- The high intensity of the STED beam (use red, near-IR).
- What is the importance of damage/signal far way from the focus plane, where the STED beam is weak?
- Pulsed illumination implies that the excitation duty cycle is low. This limits the data rate: small rasters or few frames/s.
- Considerable technical complexity

STED, PALM/STORM, 15M and SSIM have different "sensitivities" to Poisson Noise.

	Detector, (QE _{eff} , noíse)	Sensitivity to out-of-focus líght	Inherent contrast, ∆1/1	Recorded electrons/ píxel	Data rate límíted by	
STED	APD, pulsed signal	Líttle	hígh	105	scanned ímage, pulsed íll.	
PALM	EM-CCD	none	hígh	1005	few molecules/ frame, 100s of	
STORM	EM-CCD	none	hígh	1005	trames/image. EM-CCD frame rate limiting	
15M	EM-CCD	Seríous	Much lower	1,000s to 10,000s	Many frames/ plane: Límíted by CCD camera frame rate	
SSIM	EM-CCD	Seríous	Much lower	1,000s to 10,000s		

STED, PALM, STORM, 15M etc. use a variety of different photodetectors.

Method/Det	CCD	EM-CCD	APD	PMT	
STED			×	×	
PALM/STORM		×			
15M	X	×			
QE _{EFF} , %	80-95	40-45 multiplicative noise	40-45	2-10	
NOISE, e ⁻ /p	3 - 10	0.003	pulse counting	0.003	
Other factors	slow read	Frame transfer Vertical smearing	Signal loss to pulse pile-up	multiplicative noise	
These detectors all involve tradeoffs.					

STED, PALM, STORM, 15M etc. subject the specimen to different excitation intensities.

Method/ excitation	Spot/ Area	Input power	Input power density	Mitigating factors	Exacerbating factors	
STED	spot	mW	Very high	Most excitations depleted. Pulsed illumination	Near-IR/red dyes	
PALM/STORM	area	mW	Very low	Evanescent illumination	Slow recording	
15M	area	mW	Low	Modest equípment	Slow recording, Immotile spec.	
15M saturated	curated Area, pattern, saturated mW high		Pulsed illumination	Dyes with long singlet lifetime Slow recording Immotile spec.		
What about the specimen? Do the optical characteristics of the cell limit microscope performance?

About 8 years ago, I took a test image of a cheek-cell using backscattered light (BSL). It turned out to be more interesting than I expected...

This is an xz image of a cheek cell made using backscattered light.

Bottom surface of coverslip

Top surface of slide

Something was wrong with this image.

So let's try with a water lens...

Same problem...

INRA: Sophia-Antipolis, 12/2009

Thanks to Glen MacDonald for making this movie from my data.

a stereo view of the same data ...

Use your red and green glasses.

Cross your eyes and concentrate on the central image.

What appears to be happening ...

As cells are "lumpy," optical "sections" are seldom planar.

BSL image of cheek cell, 40x NA 1.2 cApo-water, BioRad B39L

USB Gisephie Astipolis Rectoglasses.

BSL stereo-pair, ±7°, from 16 optical sections, 1-6 µm past the coverslip surface. 40x/1.2 cAPO water

Use your red and green glasses.

BSL stereo-pair, ±7°, from 60 optical sections, 4-24 µm past the coverslip surface. 40x/1.2 cAPO water

Use your red and green glasses.

Cells are full of stuff. It can be interesting to see what some ofthose "refractile bodies" look líke.

Use your red and green glasses.

Don't let a nice Acridine-orange fluorescence image ...

Acridine-orange stained cheek cell, 40x, NA 1.2 cApo-water, BioRad BSL

fool you into thinking that nothing else is going on.

Biological specimens are optically inhomogenious: (They produce phase-constrast and DIC images.)

This inhomogeneity severely limits the optical performance that can be obtained on biological specimens, a limitation that is particularly important when viewing living specimens because the "embedding medium" cannot be changed.

STED, PALM/STORM, 15M and SSIM place different conditions on the specimen.

Method/Det	STED	PALM	STORM	15M	SSIM
RI uniformity	slight	NA	NA	seríous	seríous
Thin specimen	no	TIRF	TIRF	4Pí	4Pí
Dye:tríplet	seríous	bleaching		bleaching	bleaching
Dye:stability	seríous, best ín IR	photo- actívatable	photo- swítchable	seríous	seríous
Dye: other		<mark>requíres</mark> bleachíng	may double count		
Use of emítted photons	good	very good	very good	out-of- focus líght	out-of- focus líght

Always, there are tradeoffs.

The Holy Grail still becons

"The holy grail is to see dynamically imaged living cells noninvasively, to see at the level of an individual protein molecule, and to see how the molecules interact in a cell," Betzig says. "It's many years away, but you can dream about it.*"

...but we have to recognize that we probably cannot do everything at once.

*HHMI Bulletín, 19:1 February, 2006,

In a way, we have only scratched the surface. Although we may be approaching practical limits in the optics and photodetectors, we have not discussed new dyes, such as some ps metal-cluster dyes, with less intersystem crossing, and hence less damage. Surely, finer LM resolution is most important when imaging cells that are both alive and happy. Dead cells can often be seen more easily in EM. Clearly, we will need all the help we can get to proceed much farther! Let the discussion begin!

My thanks to all those who have developed and perfected these dazzling new techniques And thank you even more for allowing me to use your data.

Finally, thank you for your attention.