AOC

Rachid Guerraoui, EPFL

This Talk

Advertisement
Complexity of a computation
Complexity of a distributed computation

Complexity of a distributed system

Adversary-Oriented-Computing

.

:
-

NP

3 7
11 13 17 19
23 29
31 37
4 43 47
23 29
&1 &7
71 73 79
23 29
o7

Complexity

Number of steps (cells) of a (batch)
program on a Turing machine

This Talk

Complexity of a computation C(P)

. T(Xl(l;i‘ ‘.
Che [-ellowship of the King

What distributed computation?

2 |3 2 7

11 13 17 19
23 29

31 37

4 43 47
23 29

&1 &7
71 73 79
23 29

97

Complexity: C(P)/n ?

Naive distribution is not good enough

Synchronization is heeded
(e.g., a counter object)

What complexity?

No contention: O step

Contention: k steps

Node failures: n steps

Link failures: infinity

This Talk

Complexity of a computation C(P)

Complexity of a distributed
computation C(P,A)

from centralized to distributed
computation

C(P) -> C(PA)

from distributed computation
to systems
#
C(RA)->C(PALA2,.AN) & & @

Polymorphic adversary L X X

What complexity?

Polymorphic adversary
C(O,A1,A2,A3,A4) = (1,0(k),O(f),infinity)

%

S

The Distributed System’s Nightmare

Polymorphic adversary

Paxos saga STM saga

This Talk

Complexity of a computation C(P)

Complexity of a distributed
computation C(P,A)

Complexity of a distributed system
C(P,A1,A2,..An)

Adversary-Oriented-Computing

Reduce the pb of addressing several adversaries
at a time to the “classical” problem of
addressing one adversary at a time

Adversary-Oriented-Computing

Two fundamental questions

(1) How to prove polymorphic lower bounds?

(2) How to develop polymorphic algorithms?

How to prove polymorphic lower bounds?

Algorithmic reductions of adversaries
(STOC 05, ..SPAA 12)

—

K steps with

Can be simulated with

t rounds of a t-resilient synchronous
algorithm can be simulated by

a 1-resilient asynchronous algorithm

Two fundamental questions

(1) How to prove polymorphic lower bounds?

Algorithmic reductions of adversaries

(2) How to develop polymorphic algorithms?

AOC (PODCO00, ..Eurosys 10, PLDI12, Spaa 12)
Switch(adversary)
Case Al: algorithm 1();
Case A2: algorithm 2();

Case Ak: algorithm_ k()

State machine

Shared Object

Safety: if c1 delivers history h1 and
c2 delivers history h2, then one is the
prefix of the other

Liveness: if a correct client c invokes a
request req, then c eventually delivers
response h (req)

AOC Object (A)

Liveness (1): if a correct client c
invokes a request req, then c commits
or aborts h (req)

Liveness (2) : h (req) is committed if
the adversary is weaker than A

AOC Object

Safety (1): if c1 commits history hl and c2
commits h2, then one is prefix of the other

Safety (2): if c1 commits history hl and c2 aborts
h2, then hl is prefix of h2

Composition Theorem (PLDI 12)

AOC Object A1 + AOC Object A2

AOC Object (A1 U A2)

Two fundamental questions

(1) How to prove polymorphic lower bounds?

Algorithmic reductions of adversaries

(2) How to develop polymorphic algorithms?

Modular/dynamic switching of adversaries

This Talk (AOC)

Complexity of a computation C(P)

of a distributed computation C(P,A)

of a distributed system C(P,A1,A2,..An)

Adversary-Oriented-Computing
C(O,Al1) C(O,A2) .. C(O,An)

Thank you for your attention

