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Topics: 

1) Neural or Threshold Networks: dynamics; energy; complexity 

2) Application to Schelling Segregation Model and  
     bootstrap percolation complexity . 

3) Regulation Networks: dynamics and Robustness. 

4) Ants models and its complexity. 

5) Cellular Automata Communication Problems 



Neural or threshold Networks 

We consider a 4x4 lattice with periodic conditions, 
nearest interactions, states 0 or 1, and the local majority function: 
If the number of ones is bigger or equal to the number of zeros then 
the site takes the value 1 

� 

x'ij =1

� 

iff

� 

xi� 1, j + xi+1, j + xi, j � 1 + xi, j+1 ≥ 2

Situation: thésard sans sujet dans un séminaire 
à l’IMAG …. Conférenciers : deux physiciens: 
Maynard et Rammal (1978)  



Dynamics: two cycles and fixed points; different  
behavior for different updates ……… 



Neural networks 

� 

for
� 

� 

1 � i � n

� 

b = (bi)
� 

� 

� x i = s( wij x j
j =1

n

� � bi)

The weight matrix 

The threshold vector 
� 

� 

W = (wij )

� 

� 

s(u) =1 iff 
� 

� 

u ≥ 0
 0        otherwise 



Given the labels of the nodes  

� 

(1)(2)....(n)

� 

{1,....,n}

� 

(� 1,...,� n1
)(� n1 +1,...,� n2

)....(� nq� 1 +1,...,� nq
)

� 

�

� 

(1,2,....,n)

Block sequential update: blocks are iterated 
one by one from left to right in a prescribed order: 

is a a permutation 

The synchronous (parallel) update: 

A sequential update:  

The first to remark the different iteration modes 
 was Francois Robert , Discrete Iterations (Springer, 1986) 



For arbitrary matrices W previous model may accept, 
 iterated in parallel or block-sequentially, long period cycles 
and long  transients … But when W is symmetric the 
network admits short periods and an energy: (E.G and J.Olivos, 

Discrete Mathematics, 1980,Discrete Applied Maths, 1981; E.G, SIAM J of Computing, 1982;  E:G, F. 
Fogelman, Discrete Applied Maths(1985)) 

� 

E(x(t)) = � xi
i=1

n

� (t) wij
j=1

n

� x j (t � 1) + bi
i=1

n

� (xi(t) + xi(t � 1))

� 

E(x) = � 1
2

wij
j=1

n

�
i=1

n

� xix j + bi
i=1

n

� xi

Further, if  diag (W) ≥ 0, any sequential update 
 admits the energy (E.G., F. Fogelman, G. Weisbuch, Disc. Applied 
Maths.  1982) 



Which implies that: 

1) for the synchronous iteration the attractors are only 
Fixed points or two cycles !! 

2) For any sequential iteration with diag(W)≥0 there 
 are only fixed points 

3) For the parallel update 
     if and only if 

    For the sequential update  
     iff            So, the attractors are only fixed points. 

4)  In both situations transients are bounded by    
 α｜｜W｜｜x｜｜b｜｜ 

� 

� E = E(x(t)) � E(x(t � 1) < 0

� 

x(t) π x(t � 2)

� 

� E = E(x ') � E(x) < 0

� � 

� x π x



                  Some applications: 

 1) A neural equation with memory 

( la paramecie: le comportement de ce neurone unique a eté  
étudié par plusieurs chercheurs …..M.Cosnard, M. Tchuente.,  
T.de Saint Pierre. and E.G … ce qui constitue un abus  
too much !!! ….Trop de neurones pour étudier un organisme  
unineuronal !!!!!!) 

� 

x(t) = s( wk
k=1

n

� x(t � k) � b)

2) Majority functions and Bootstrap percolation models 
    (Pedro Montealegre, E.G (2011)) 

3) Schelling Segregation 
    (Nicolás Goles-Domic, Sergio Rica, E.G(2010-11) 



    Symmetry is so restrictive? 

…… No …. because one may simulate any  
non-symmetrical neural network in linear space by a  
symmetric one with an specific update mode … 



To give an other kind of answer I have to introduce a 
complexity 
 measure usually used in theoretical computer science. 

The class P: problems which we can be decided in a serial 
computer in polynomial time. 

The class NC: problems which can be decided in a parallel  
machine (say a PRAM) in poly-logarithmic time by using a  
polynomial number of processors. 

. 



      Bootstrap Percolation 

Given a finite non oriented graph G=(V,E) 

And an initial configuration of 0’s and 1’s 

Consider the strict majority function operating at each node 

What is the relationship between the graph and the 
proportion of 1’s such that  iterated in parallel  
every node  will become 1? 





Decision problem PER: given an initial  
configuration and a specific node at value 0.  
does there exist T>0 such that this  
node becomes 1? 

Theorem     (Pedro Montealegre, E:G (1911)) 

 If the graphs may have vertices with degree ≥ 5,  
PER is P-complete. 

If the maximun degree ≤ 4, PER belongs to NC 



Clearly PER belongs to P, because in almost O(n) steps 
 the dynamics arrives to the steady state. 

The proof of P-Completeness consists in simulating the 
monotone circuits behavior inside the strict majority dynamics. 





For the case when the maximum degree ≤ 4 
one may reduce the problem to compute 
connected and biconnected components in 
the graph, which one may do in a PRAM in       

� 

O((logn)2)

See Jaja …………ce ne pas une blague !!!! 



The Schelling Segregation 
                 model 

(Nicolas Goles-Domic, Sergio Rica, E.G. 

PHYSICAL REVIEW E 83, 056111 (2011) 
And work in progress. 



The Model of  Segregation by Shelling 

   Lattice one or two dimensional 
with periodic conditions 

   State 
   Neighborhood  Moore 

(green and red arrows) 
and von Neumann (red 
arrows) 

   Tolerance threshold 

Thomas C. Schelling (1969 - 1972) 

� 

� � {1,....V }



Happiness threshold 
An individual is unhappy if there are 
more than     individuals on the other 
state in its neighborhood 

� 

�

The update rule 
At each step, one lists the unhappy 
individuals of both species, and then 
randomly (for instance) one 
exchanges two individuals of opposite 
value. 



Quantitative behavior 
:the energy decreases 

� 

� ≥ 5

In general, if V is the neighborhood, the energy decreases 
If and only if  

� 

� > V
2



Geometrical interpretation 

It is easy to see that the energy minimizes the perimeter of 
the clusters …… so  the dynamics tries to do that !! 

Other phase diagrams with circle-neighborhoods  
with different radios    (Nicolás Goles-Domic Simulations): 



Phase diagram 
for Moore’s neighborhood 







 Prediction, short-cuts and 
Computational Complexity 

The real state problem: Is it easy to know if  
someone would change his house? 



•  The Real State Prediction problem         
                          (RSP) 

•  Will a site i, such that          , have a non 
zero probability to change its state at 
some step      ? 



We will first analyse the real state problem for 1D 
and the von Neumann neighborhood in 2D. 

Nearest neighbors 

For both parameters,              , RSP is easy to solve 

� 

� =1For          belongs to NC 



-1 1 Both are unhappy: swaps for T= 1 

In general consider the nearest +1 

1 -1 -1 -1 -1 

0 1 2 3 4 

So P=0 for T<4 else P>0  

� 

� =1



The von Neumann Neighborhood 
Two dimensions 



Case       

� 

� =1 i.e. a site is unhappy iff there exists at 
 least one neighbor in a different state 

Further, in this case two neighbors in diferent state 
 are both unhappy !!! 

= -1 

=+1 

Site (0,0) 

We find the nearest site at different value +1 

p 

q 

D = p+q 



Clearly me may do it by a PRAM as we  
did in the one dimensional case 

Case  

An unhappy site has to be in a very bad situation: every neighbor 
being in the other state 

So we may now decide if there exists two unhappy people 
in different state in O(1) 

� 

� = 4



Case  

� 

� = 3

Recall that for          the 
operator E is an energy, so the 
dynamic converges to fixed 
points which are local minima 
of E.    

� 

� � {3,4}

A fixed component of, say -1, is such that each element has at 
 least two neighbors at the same state 



will vanish if there are enough unhappy  

(0,0) 

= -1 

= -1 



So the site (0,0) at value -1 will never change if it belongs 
to a connected component such that there exists two different 
paths to stable clusters  

Or it belongs to a  
biconnected component 

Site (0,0) 

Site (0,0) 

Site (0,0) 



The search of the connected component of -1’s where 
site (0,0) belongs can be done in                with  
polynomial number of processor in a PRAM 

Also one may compute biconnected components in  

� 

O log(N( )2( )

� 

O log(N( )2( )

Finally we may compute the number of unhappy +1’s in O(1) 
with O(N) processors  

Remark: N= nxn the number of sites in the network 

See JaJa’s book et ce n’est pas une blague !!!! 



So the Schelling problem belongs to NC for             and it is 
constant for    

� 

� � {1,3}

� 

� = 4

Now we have to see the complexity for  

� 

� = 2

It is in P because we will only accept 
nearest swaps (a,b) such that d(a,b)=1, so 
it is enough to compute the light-cone 
associated to the site (0,0) 

For            the segregation problem is P-Complete 

� 

� = 2



Wire to the rigth 

OR-Gate AND-Gate 



a b
c d e

f 
g
h
o
p

Cross-over 

 updated mode 
For the cross-over (a,b), (b,c),(c,d),(d,e) 

(f,g),(g,h),(h,o),(o,p) 



� 

� =12

� 

� =12



Ants 

•  Could intelligence be an emergent 
property??? 

•  Au debut de l’été 1982 j’ai reçu une 
bien curieuse lettre à Grenoble …… 



Planar ant model (Langton’s ant) 



              Ant’s dynamics 



One may design logical gates 



Theorem: the Langton’s ant 
Is P-Complete, further it  
simulates a computer. Further it is  
undecidable how the ant will go 
to infinity. (Reachability problem)  

   (Anahí Gajardo, Andrés Moreira 
         E.G., Complexity, 1990 …) 



Some associated models and  
its dynamics 



Boolean Networks 



                            History 

•  Stuart. Kauffman,Metabolic stability and 
epigenesis in randomly connected nets, J. Of 
Theor. Biol, 22, 437-67, 1969. 

•  François Robert, Discrete Iterations, Springer 
Verlag, 1986. 
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  Andrés Moreira   (Universidad Federico Santa Maria, Valparaíso, Chile) 

  Lilian Salinas       (Universidad de Concepción, Chile) 

   Gonzalo Ruz       (Universidad Adolfo Ibáñez) 



� 

F{1,2,3}(x1,x2,x3) = (x2,x1 + x3,� x2)
F{1,2}{3}(x1,x2,x3) = (x2,x1 + x3,(� x1)(� x3))
F{1}{2,3}(x1,x2,x3) = (x2,x2 + x3,� x2)
F{1}{2,3}(x1,x2,x3) = (x2,x2 + x3,(� x2)(� x3))

1 2 3 
_ 

{1,2,3} 

{1,2} {3} {1} {2,3} 

{1} {2} {3} 

Block Sequential 
 partitions for three  
        elements 



� 

F{1,2,3}

� 

F{1,2}{3}

� 

F{1}{2}{3}

� 

F{1}{2,3}

000 001 011 110 

010 100 

101 111 

000 001 011 110 

010 100 

101 111 

000 

001 

011 110 

010 

100 

101 

111 

000 001 011 110 010 100 

101 111 

Block  
sequential 
diagrams 

Two cycle 



Cycles in synchronous and serial Iterations 

000 

001 

011 110 101 

010 

111 

100 

001 

011 

110 101 010 

100 000 

111 

Parallel update: 3-cycles 
Serial update: 2-cycle 

� 

G :{0,1}3 � {0,1}3

g1(x1,x2,x3) = x2
g2(x1,x2,x3) = x3
g3(x1,x2,x3) = x2

� 

F :{0,1}3 � {0,1}3

f1(x1,x2,x3) = x2
f2(x1,x2,x3) = x3
f3(x1,x2,x3) = x1

1 

2 

3 

1 

2 

3 



Consider a network with non-negative loops  
then the cycles with period≥2, if they exists,  
are different  for parallel and serial iteration.  

i.e both iterations cannot share non trivial cycles 

Comparison between parallel and serial dynamics of Boolean networks 
E.Goles, L. Salinas, T.C.S. 

Theorem. 



There is another way to encode different updates. Consider a network 
N = (F, s); where F is the set of n local boolean functions and s is the 
“order” to update the nodes. 

That is to say  s is a function from the set of nodes on itself. 

� 

s :{1,....,n} � {1,.....,n}

Such that      

� 

s(i)  s( j) means node i is updated before node j 

From that we may define a signed graph. To the graph G, 
asociated to F we define G(s) as follows: 

� 

sgn(i, j) = + 1 if  

= - 1 if    

� 

s(i)  s( j)

� 

s(i) ≥ s( j)



1 

3 2 
+ 

+ 

+ 

+ 

- 

- 
� 

s(1) = 2

� 

s(2) = 3

� 

s(3) =1

The 3d node is updated first; the 1st is updated the second; 
and the 2nd is the last to be updated. The iteration corresponds 
to the serial update (3)(1)(2) 



Given two iteration modes on a same 
boolean function, i.e. 

� 

(F,s1)

� 

(F,s2)and 

� 

Gs1
F =Gs2

F
If they have the same signed graph :  
Then they have the same dynamics 

1 2 3 (1)(2)(3)  or  
+ + 

- 

� 

s(i) = iFor  i = 
1,2,3 

1 2 3 + + 

- 
(1,2)(3) or  

� 

s(1) = s(2) =1

� 

s(3) = 2

001 010 

000 

100 011 110 101 

111 

dynamics 



Communication Complexity  
   on Cellular Automata 



   This work was done in colaboration with: 

      P.E. Meunier (Ph.D student ENSL- France) 
     I. Rapaport (DIM, U. De Chile) 
     G. Theyssier (Univ. de Savoie, CNRS, France) 
      E.G. 



1.  Communication Complexity in CA 

2.  Examples  

3. PRED decision problem 

4 Application to rule 218 

5 Intrinsic Universality and C.C 
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Def: necessary number of communication bits in order 
to compute a function when each party knows only part 
of the input 

y x 

f(x,y) f(x,y) 



We will present two communication complexity problems related with CA: 
The prediction problem (PRED). 

c 
x y Alice Bob 

To know the state 
of this site 

The prediction problem 
              PRED 



Information to be shared by Alice and Bob 
        X, Y are binary vectors, c is 0 or 1 

The  final bit is the n-th composition 
               of the local rule 

The PRED problem 



000  0 
001  1 
010  1 
011  1 
100  1 
101  1 
110  1 
111  1 

000  0 
001  1 
010  1 
011  1 
100  1 
101  0 
110  1 
111  1 

f 

g 

g 

f 



                     One way protocole for a rule f: 
The minimun bit information to be send by A (B) to B (A)  

Def: Let             the            matrix 

Theorem: the number of different rows or 
columns is a lower bound for the size of the 
 one way protocol 
In Communication Complexity E. Hushilevitz,N. Nisan,  
Cambridge University Press 1997 

� 

2n x2n

� 

(Mn c( )) = f n x,c,y( )( )
� 

Mn c( )



The communication complexity for  
additive rules is O(1) 

In fact, given the vector x, y and c 
Since     is additive: 

� 

f

It suffices that Alice send the bit: 

From additivity: 

  

� 

f n (x,c,y) = f n (x,c,
 
0 ) + f n (

 
0 ,0,y)

  

� 

f n (x,c,
 
0 )



Matrix behavior of different rules 



Rule 33 Rule 44 Rule 50 Rule 164 

Rule 184 Rule 14 Rule 35 Rule 168 

       Others  examples 



Rule 22 

000 0 
001 1 
010 1 
011 0 
100 1 
101 0 
110 0  
111 0 



Rule 30 

000 0 
001 1 
010 1 
011 1 
100 1 
101 0 
110 0  
111 0 



RULE 233 

CLASS 3        CLASS 1 
                                                                (Wolfram) 



Rule 30 

000 0 
001 1 
010 1 
011 1 
100 1 
101 0 
110 0  
111 0 

Class 4 



The prediction problem for rule 218 

Minimun information send by Alice such that Bob computes  

� 

u = f218
n x,c,y( )



Rule 218 
000  0 
001  1 
010  0 
011   1 
100   1 
101    0 
110    1 
111    1 





218’s dynamics 



Example for rule 218 



Remarks 

If the ones are isolated and every couple is separated 
by an odd number of zeros the rule 218 becomes additive.  

       In this case its behavior is like the rule 90. 

For additivity we have 

So Alice sends the bit  

So the protocol is constant for additive rules 

  

� 

f n (x,c,
 
0 )

� 

f a,b,c( ) = f90(a,b,.c) = a ≈ c

  

� 

f n x,c,y( ) = f n x,c,
 
0 ( ) ≈ f n

 
0 ,0,y( )



Definition of indexes for the 218 protocol 

A crucial  observation 

Two or more ones remain invariant by the rule application 

11 
11 



       Definition of indexes for the protocol 

Is the first one from the center cell 

Is the first 1 such that the distance with the previous 
1 from the center is even OR the next position 
is also a 1 

� 

l1

� 

l2



Clearly in this situation we do not need the position of the 
first one in order to send it to Bob. 
Since the center is 1 the parity (even or odd) only depens  
upon each side 

So for the protocol it is enough to send 
         only the second index  

� 

l2

Also in this case the protocol is optimal. One may exhibit 
a linear number of different rows in the M(1,n) matrix.  



  So, for the PRED problem CC(218) = 2log(n)+Cte                            

 Rule 218 is the first to have a quadratic number of rows ( i.e 
a 2 indexes protocol) when the center is 0  

and a linear one ( 1 index protocol) when the center is 1. 



Intrinsic Universality 

A CA which may simulates any other CA 

Theorem: F intrinsically Universal 
implies CC(PRED) is    

� 

� n( )



Some consequences 

Additive CA’s are not I.U 

Positive Expansive Ca’s are not I.U 

Rule 218 is not I.U 

As well as rule 94, 184, 33 etc ….. 



Et …. Je n’ai pas eu le temps 
de vous parler de la cigale  (Complexity, 2000) 
Et de tant d’autres curiosités 
Informatiques … 

Il faudra que je revienne vous parler de piles de 
sable l’été prochain et la complexité associé  
(Fundamentae Informaticae (2012), Enrico 
Formenti, Bruno Martin, E.G) 

                           MERCI !!!! 
                       GRACIAS  !!!! 


