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Preprocessing. Chess Example
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to mate in two moves
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Preprocessing. Train management

- We want a minimum-sized 
subset of stations S such 
that every train stops at 
least at one station from S 



Preprocessing. Train management

- Rule 1 If S(t) ⊆ S(t′), 
then remove t

S(t)={B,D}
S(t')={B}

Reduction Rules:

t

t′

A

B

C

D



Preprocessing. Train management

- Rule 2 If T (s) ⊆ T (s′), 
then remove s

Reduction Rules:
A

B

C

D



Preprocessing. Train management

K.Weihe, ALEX, 1998: Similar preprocessing for real-world data
from the German and European train schedules (25.000 stations,
154.000 trains and 160.000 single train stops) the data reduction
merely took a few minutes to reduce the original, huge input graph
into a graph consisting of disjoint components of size at most 50.



Preprocessing is ubiquitous

I Commercial linear program solvers like CPLEX

I Navigation systems

I Microarray data analysis for the classification of cancer types

I ...



Analysis of Algorithms

I Powerful tools developed since 1960s

I Theory of NP-completeness



Analysis of Algorithms. Naive question

I Take your favourite NP-complete problem

I Is there preprocessing algorithm that guarantee to reduce
every instance of your problem, say by 5%?

I Well, that would be very strange!!!

I At first glance, no interesting theory for preprocessing of hard
problems!
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Covering Points with Lines

Task: Given a set P of n points in the plane and an integer k, find
k lines that cover all the points.

Note: We can assume that every line of the solution covers at
least 2 points, thus there are at most n2 candidate lines.



Covering Points with Lines

Reduction Rule If there is a line L covering more than k points,
remove all points covered by L and reduce the
parameter k by one.

Why this rule is sound?
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Covering Points with Lines

At every step of Reduction Rule we obtain a problem with a
smaller number of points. Thus we

I either end up with the problem with no points left, and in this
case we solved the problem; YES!

I or the parameter k is zero but some points are left, in this
case the problem does not have solution; NO!

I or we arrive at the problem for which our Reduction Rule
cannot be applied. What happens here?
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Covering Points with Lines

Reduction Rule If there is a line L covering more than k points,
remove all points covered by L and reduce the
parameter k by one.

If Rule cannot be applied, WE HAVE AT MOST k2 POINTS!



So we have an algorithm that

Input: An instance of our (NP-complete) problem of size n, and
an integer k.
Output: Either correct solution, or an equivalent instance.
Properties of the algorithm and the reduced instance

I It runs in time O(n2) [polynomial time]

I Outputs an equivalent instance of size k2 [the size of reduced
instance depends only on k].



This is what kernels are about

Input: An instance of our (NP-complete) problem of size n, and
an integer k.
Output: Either correct solution, or an equivalent instance.
Properties of the algorithm and the reduced instance

I It runs in polynomial time O(nc), c some constant

I Outputs an equivalent instance of size f(k), f(k) is some
function.



Classical complexity

A brief review:

I We usually aim for polynomial-time algorithms: the running
time is O(nc), where n is the input size.

I Classical polynomial-time algorithms: shortest path,
mathching, minimum spanning tree, 2SAT, convext hull,
planar drawing, linear programming, etc.

I It is unlikely that polynomial-time algorithms exist for
NP-hard problems.



Classical complexity

I Unfortunately, many problems of interest are NP-hard:
Hamiltonian cycle, 3-coloring, 3SAT, etc.

I We expect that these problems can be solved only in
exponential time (i.e., cn).

Can we say anything nontrivial about NP-hard problems?



Parameterized complexity

Main idea: Instead of expressing the running time as a function
T (n) of n, we express it as a function T (n, k) of the input size n
and some parameter k of the input.

In other words: we do not want to be efficient on all inputs of size
n, only for those where k is small.



Parameterized complexity

What can be the parameter k?

I The size k of the solution we are looking for.

I The maximum degree of the input graph.

I The diameter of the input graph.

I The length of clauses in the input Boolean formula.

I . . .



Parameterized complexity

Problem: Min Vertex Cover Max Independent Set
Input: Graph G, integer k Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?
Is it possible to find
k independent vertices?

Complexity: NP-complete NP-complete

Complete O(nk) possibilities O(nk) possibilities

Enumeration: O(2kn2) algorithm exists No no(k) algorithm known
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Bounded search tree method

Algorithm for Minimum Vertex Cover:

Bounded search tree method

Algorithm for MINIMUM VERTEX COVER:

e1 = x1y1

x1 y1

e2 = x2y2

x2 y2
height: ! k

Height of the search tree is ! k ⇒ number of leaves is ! 2k ⇒ complete search

requires 2k · poly steps.

Fixed Parameter Algorithms – p.5/98

Height of the search tree is ≤ k ⇒ number of leaves is ≤ 2k ⇒
complete search requires 2k · poly steps.



Fixed-parameter tractability

Definition: A parameterization of a decision problem is a function
that assigns an integer parameter k to each input instance x.

The parameter can be

I explicit in the input (for example, if the parameter is the
integer k appearing in the input (G, k) of Vertex Cover),
or

I implicit in the input (for example, if the parameter is the
diameter d of the input graph G).

Main definition:

A parameterized problem is fixed-parameter tractable (FPT)
if there is an f(k)nc time algorithm for some constant c.
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Fixed-parameter tractability

Example: Minimum Vertex Cover parameterized by the
required size k is FPT: we have seen that it can be solved in time
O(2k + n2).

Better algorithms are known: e.g, O(1.2832kk + k|V |).

Main goal of parameterized complexity: to find FPT problems.



FPT problems

Examples of NP-hard problems that are FPT:

I Finding a vertex cover of size k.

I Finding a path of length k.

I Finding k disjoint triangles.

I Drawing the graph in the plane with k edge crossings.

I Finding disjoint paths that connect k pairs of points.

I . . .



FPT algorithmic techniques

I Significant advances in the past 20 years or so (especially in
recent years).

I Powerful toolbox for designing FPT algorithms:

FPT algorithmic techniques

Significant advances in the past 20 years or so (especially in recent years).

Powerful toolbox for designing FPT algorithms:

Iterative compressionTreewidth

Bounded Search Tree

Graph Minors Theorem
Color coding

Kernelization
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Books

Downey-Fellows: Parameterized Com-
plexity, Springer, 1999

Flum-Grohe: Parameterized Complexity
Theory, Springer, 2006

Niedermeier: Invitation to Fixed-
Parameter Algorithms, Oxford University
Press, 2006.



Kernelization

Definition: Kernelization is a polynomial-time transformation that
maps an instance (I, k) to an instance (I ′, k′) such that

I (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

I k′ ≤ k, and

I |I ′| ≤ f(k) for some function f(k).

(I ′, k′) is kernel.

Our example with n points and lines.

I Instance (I, k) with n points and parameter k

I New equivalent instance (I ′, k′) with k′ ≤ k and I ′ consisting
of at most k2 points: a kernel with k2 points.
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TWO BASIC QUESIONS:

--- Does the problem have a kernel?

--- How large the kernel can be?



When the problem has a kernel?

Definition: Kernelization is a polynomial-time transformation that
maps an instance (I, k) to an instance (I ′, k′) such that

I (I, k) is a yes-instance if and only if (I ′, k′) is a yes-instance,

I k′ ≤ k, and

I |I ′| ≤ f(k) for some function f(k).

Simple fact: If a problem has a kernelization algorithm, then it is
FPT.
Proof: Solve the instance (I ′, k′) by brute force.

Converse: Every FPT problem has a kernelization algorithm.
Proof: Suppose there is an f(k)nc algorithm for the problem.

I If f(k) ≤ n, then solve the instance in time f(k)nc ≤ nc+1,
and output a trivial yes- or no-instance.

I If n < f(k), then we are done: a kernel of size f(k) is
obtained.
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TWO BASIC QUESIONS:

--- Does the problem have a kernel?

          Problem has a kernel <=> Problem is in FPT

--- How large the kernel can be?

        Polynomial kernels via exponential kernels



What's next

Two kernels for Vertex Cover

I: Naive approach

II: Crown Decomposition



Kernelization for Vertex Cover

Problem: Min Vertex Cover
Input: Graph G, integer k
Question: Is it possible to cover

the edges with k vertices?



Kernelization for Vertex Cover

General strategy: We devise a list of reduction rules, and show
that if none of the rules can be applied and the size of the instance
is still larger than f(k), then the answer is trivial.

Reduction rules for Vertex Cover instance (G, k):

Rule 1: If v is an isolated vertex ⇒ (G \ v, k)
Rule 2: If d(v) > k ⇒ (G \ v, k − 1)

If neither Rule 1 nor Rule 2 can be applied:

I If |V (G)| > k(k + 1) ⇒ There is no solution (every vertex
should be the neighbor of at least one vertex of the cover).

I Otherwise, |V (G)| ≤ k(k + 1) and we have a k(k + 1) vertex
kernel.
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Kernelization for Vertex Cover

Let us add a third rule:

Rule 1: If v is an isolated vertex ⇒ (G \ v, k)
Rule 2: If d(v) > k ⇒ (G \ v, k − 1)
Rule 3: If d(v) = 1, then we can assume that its neighbor u is

in the solution ⇒ (G \ (u ∪ v), k − 1).

If none of the rules can be applied, then every vertex has degree at
least 2.
⇒ |V (G)| ≤ |E(G)|

I If |E(G)| > k2 ⇒ There is no solution (each vertex of the
solution can cover at most k edges).

I Otherwise, |V (G)| ≤ |E(G)| ≤ k2 and we have a k2 vertex
kernel.



Kernelization for Vertex Cover

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u1 and u2 are
adjacent, then we can assume that u1, u2 are in the solution ⇒
(G \ {u1, u2, v}, k − 2).

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4a: If v has degree 2, and its neighbors u1 and u2 are adjacent, then we
can assume that u1, u2 are in the solution⇒ (G \ {u1, u2, v }, k − 2).

v

G

u1

u2

Fixed Parameter Algorithms – p.16/98



Kernelization for Vertex Cover

Rule 4b: If v has degree 2, then G′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G′, k − 1).

Kernelization for VERTEX COVER

Let us add a fourth rule:

Rule 4b: If v has degree 2, then G ′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2
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Correctness:

I Let S′ be a vertex cover of size k − 1 for G′.

I If u ∈ S′ ⇒ (S′ \ u) ∪ {u1, u2} is a vertex cover of size k for
G.

I If u 6∈ S′ ⇒ S′ ∪ v is a vertex cover of size k for G.



Kernelization for Vertex Cover
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the two neighbors of v and deleting v ⇒ (G′, k − 1).
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u
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u2

Fixed Parameter Algorithms – p.16/98

Correctness:

I Let S be a vertex cover of size k for G.
I If u1, u2 ∈ S ⇒ (S \ {u1, u2, v}) ∪ u is a vertex cover of size
k − 1 for G′.

I If exactly one of u1 and u2 is in S, then v ∈ S ⇒
(S \ {u1, u2, v}) ∪ u is a vertex cover of size k − 1 for G′.

I If u1, u2 6∈ S, then v ∈ S ⇒ (S \ v) is a vertex cover of size
k − 1 for G′.



Kernelization for Vertex Cover

Rule 4b: If v has degree 2, then G′ is obtained by identifying
the two neighbors of v and deleting v ⇒ (G′, k − 1).

Kernelization for VERTEX COVER

Let us add a fourth rule:
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the two neighbors of v and deleting v ⇒ (G ′, k − 1).

v ⇒

G ′G

u

u1

u2
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Kernel size:

I If |E(G)| > k2 ⇒ There is no solution (each vertex of the
solution can cover at most k edges).

I Otherwise, |V (G)| ≤ 2|E(G)|/3 ≤ 2
3k

2 and we have a 2
3k

2

vertex kernel.



Crown Reduction

Definition: A crown decomposition is a partition C ∪H ∪B of
the vertices such that

I C is an independent set,

I there is no edge between C and
B,

I there is a matching between C
and H that covers H.

B

H

C
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Definition: A crown decomposition is a partition C ∪H ∪B of
the vertices such that

I C is an independent set,

I there is no edge between C and
B,

I there is a matching between C
and H that covers H.

B

H

C

Crown rule for Vertex Cover:
The matching needs to be covered and we can assume that it is
covered by H (makes no sense to use vertices of C)



Crown Reduction

Definition: A crown decomposition is a partition C ∪H ∪B of
the vertices such that

I C is an independent set,

I there is no edge between C and
B,

I there is a matching between C
and H that covers H.

B

H

C

Crown rule for Vertex Cover:
The matching needs to be covered and we can assume that it is
covered by H (makes no sense to use vertices of C)
⇒ (G \ (H ∪ C), k − |H|).



Crown Reduction

Key lemma:

Lemma: Given a graph G without isolated vertices and an integer
k, in polynomial time we can either

I find a matching of size k + 1, ⇒ No solution!

I find a crown decomposition, ⇒ Reduce!

I or conclude that the graph has at most 3k vertices.

I ⇒ 3k vertex kernel!

This gives a 3k vertex kernel for Vertex Cover.
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Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

For the proof, we need the classical Kőnig’s Theorem.

τ(G) : size of the minimum vertex cover
ν(G) : size of the maximum matching (independent set of

edges)

Theorem: [Kőnig, 1931] If G is bipartite, then

τ(G) = ν(G)



Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

Proof:
Find (greedily) a maximal matching; if
its size is at least k + 1, then we are
done. The rest of the graph is an
independent set I.

Find a maximum matching/minimum
vertex cover in the bipartite graph
between X and I.

Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial
time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof: Find (greedily) a maximal matching; if its
size is at least k + 1, then we are done. The rest
of the graph is an independent set I .

IX
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I

X
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Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover
contains at least one vertex of X
⇒ There is a crown decomposition.

Case 2: The minimum vertex cover
contains only vertices of I ⇒ It
contains every vertex of I
⇒ There are at most 2k + k = 3k
vertices.

Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial
time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at least
one vertex of X
⇒ There is a crown decomposition.

C

HX

I
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Proof
Lemma: Given a graph G without isolated vertices and an integer k, in polynomial time
we can either

I find a matching of size k + 1,

I find a crown decomposition,

I or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover
contains at least one vertex of X
⇒ There is a crown decomposition.

Case 2: The minimum vertex cover
contains only vertices of I ⇒ It
contains every vertex of I
⇒ There are at most 2k + k = 3k
vertices.

Proof

Lemma: Given a graph G without isolated vertices and an integer k , in polynomial
time we can either

find a matching of size k + 1,

find a crown decomposition,

or conclude that the graph has at most 3k vertices.

Proof:
Case 1: The minimum vertex cover contains at least
one vertex of X
⇒ There is a crown decomposition.

Case 2: The minimum vertex cover contains only
vertices of I ⇒ It contains every vertex of I
⇒ There are at most 2k + k vertices.

I

X
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Conclusion

I Kernelization can be thought of as a polynomial-time
preprocessing before attacking the problem with whatever
method we have. “It does no harm” to try kernelization.

I Some kernelizations use lots of simple reduction rules and
require a complicated analysis to bound the kernel size. . .

I . . . while other kernelizations are based on surprising nice
tricks and deep mathematical ideas.

I Possibility to prove lower bounds.
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