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Boxing Kangaroos 



Stags 



The Problem 

•  How does ritualised fighting emerge in 
intra-species conflict? 

•  Why do individuals limit the use of their 
weaponry?  

•  Maynard Smith & Price (1973) 
venemous 



Games in Biology 

•  Fisher (1930)  The Genetical Theory of 
Natural Selection “On the evolution of the 
sex-ratio”.  

•  Kalmus(1960) Games animals play. 
•  Maynard Smith & Price(1973) The logic of 

animal conflicts. 



Evolutionary Conflicts 

•  2 Player, symmetric.  

•  Suppose each individual has a set of available 
strategies S. 

•  There is a payoff function f:SxS->R, so if an 
individual plays strategy x and his opponent 
plays  strategy y then that individual receives 
f(x,y) (     f(y,x) in general) 



Additivity 

•  Payoffs are additive, so if an individual plays x in 
a population which has p(y) playing y then the 
expected payoff to x is  



Additivity 

•  Further if an individual or group of individuals 
plays x’s with probabilities r(x), against a group 
playing y’s with probabilities p(y) then their 
expected payoff is 



Evolutionarily Stable Strategies 

•  Maynard Smith & Price (1973) introduced 
the idea of an ESS. They specified this as 
a strategy which if played by the 
population would be capable of resisting 
invasion by any alternative strategy.  



Evolutionarily Stable Strategies 

p 

q 

= 
(1-λ)p+λq 

p 
Evolves 

Population 

Invaders 

Perturbed population 

p 

Population is stable wrt invasions 



ES 
•  We say p is Evolutionarily Stable wrt q if  

•  Thus for λ small (mutations, fluctuations) require  
(1) 

or 

(2) 



ESS 

We say p is an ESS if, and only if, p is ES wrt 
every q       p. 



Support and Equality 

•   U(p)={x; x ε S & p(x)>0} is the support of 
p.    

•  Define T(p)={x; x S & E(x,p)=E(p,p)} 

ε 



ESS is an equilibrium 

•   

An ESS must be an equilibrium  

i.e. E(x,p)=E(p,p) for (almost) all x ε U. 



War of Attrition 

•  Two individuals each choose a time to 
display. When the lesser time elapses the 
corresponding individual departs. The 
other collects the reward V. The cost is the 
time. 

•  This is an all-pay auction! 



Who fetches the beer? 



The War of Attrition 



“The War of Attrition” 



The Unlabelled Ordinal Conflict 



The War of Attrition 



War of Attrition 

There can be no atoms in an ESS except at 
values v where it is not permitted to play in 
some non-zero interval (v, w]. 

If there were an atom p(s) at some s then 
playing s+  (if that were possible) would 
have a higher payoff than s (actually by an 
approx. amount Vp(s)/2). 



The War of Attrition 

•  Now an ESS p must be an equilibrium, thus for x 
in U(p) (the support of p) we must have 

•  So we examine 



The War of Attrition 



War of Attrition 



War of Attrition 



War of Attrition 



The War of Attrition 
•  For                            the only equilibrium is 

So effort is perfectly converted to reward. 
No memory. 



The War of Attrition 

•  Now it can be proved (Bishop & Cannings, 1976) 
that for all p and q 

 with equality only when p=q. 
•  So given the p (an equilibrium) above it follows 

that p is an ESS.  



Finite Time 

•  In practice individuals may well be limited 
in how long they may play e.g. by the 
onset of sunset, etc. 



Finite Interval [0,m] 

•  Neg. Exp. over [0,m-v/2] and Atom at m. 
•  E(p,p)=0 

m m-V/2 

exp(-x/V)/V 



Discrete Plays 

•  Individuals may be constrained to always 
play the same (pure) strategy, e.g. they 
may need to “pick” the size of their 
weapons, as they will grow.  



Discrete Space 

•  Suppose S={m0,m1,m2,……..,mk-1,mk} 
   where mi<mi+1 all i. Then (we revisit later) 
   obtain a unique ESS, with atoms on a 

subset of S, e.g. 

m0      m1    m2             m3         m4               m5    m6       m7    m8            m9             



Discrete S 

•  Suppose that T= {x0,x1,….xn}        S . So we have 
vectors of frequencies over T. 

•  Suppose A is the payoff matrix i.e aij=f(i,j) i,j       T, then 
we seek ESS which is equilibrium p, i.e. require                             

•  so need 



p is an equilibrium 

•  For p  an equilibrium over T to be an ESS we 
require that E(x,p)<E(p,p) all x ε S\T and that      

    C=(cij)=(aij-ain-anj+ann) is negative definite 
    (see Haigh, 1975 & Abukucs, 1977) 
 NB. If we take a set of mixtures which span the 

space then the condition above is still sufficient 
even though the payoff matrix will be very 
different. 



Discrete S 

•  Thus to find all ESS’s we need to examine all 
the possible T i.e.(          ) cases. 

•  However Bishop and Cannings proved that if 
there is an ESS on some T then there cannot be 
an ESS on a subset of T. 



Discrete S 

•  Broom, Cannings,Vickers proved many 
other restrictions on the coexistence of 
ESS’s for general matrix games. 

•  Example. Cannot have ESS’s on {1,2}, 
{1,3} and {2,3} simultaneously. 



Patterns of ESS’s: n=5 



Problems with the ESS concept 

EVOLUTIONARILY 

STABLE  

STRATEGY 



Problems with the ESS concept 

EVOLUTIONARILY 

STABLE  

STRATEGY 
IT IS NOT A STRATEGY 



Problems with the ESS concept 

•  To be a strategy there must be a proper 
specification of what plays are available to 
the individuals. 

•  The ESS describes the overall play of the 
population (average). 



Problems with the ESS concept 

EVOLUTIONARILY 

STABLE  

STRATEGY 

IT IS NOT STABLE 



The Problem with the ESS concept 

•  To be stable a system needs a properly 
specified dynamic; i.e. a description of 
how the frequencies of the strategies 
change as a result of the conflicts. 



The Replicator Dynamic 
•  The simplest dynamic supposes that the frequency of a 

strategy i (properly specified) at time (discrete) t , say, is 
given by       in  

Here A=(ai,j) is the payoff matrix, c is the constant 
background fitness, pt is the population strategy 
frequency. 



The Replicator Dynamic 

•  Note that the value of c does not affect the 
set of ESS’s. 

•  It may affect the behaviour of the dynamic. 



 W of A 

•  In the War of Attrition on any S (of pure 
plays) in fact there is a unique ESS 
(ignoring sets of measure zero). 

•  Moreover under the replicator dynamic 
convergence is assured.  

•  The value of c is irrelevant to the 
dynamics.  



War of Attrition; 2 strategies  
mn-1<mn 

Payoff matrix 

 0                     Frequency of mn                                     1 

always 

If (mn-mn-1) > V/2 there is a polymorphic ESS 
Otherwise   only mn present. 

Convergence of the frequencies is monotone 



War of Attrition 

•  Payoff Matrix 

0 

1 

2 

n-2 

n-1 

n 

    0                  1                  2         …….        n-2                  n-1                 n 



War of Attrition: Discrete S 
•  Noting that the entries in the rows from  

i to n up to the (i-1)th position are identical we 
see that the equilibria over some T and some  
W        T  must have precisely the same relative 
frequencies over the set T. 

•  Thus we can find the ESS’s by working 
sequentially from mn        to       {mn,mn-1}     to  
{mn,mn-1,mn-1} and so on. 



mk vis-à-vis {mk+1, mk+2,……,mn} 
•  Suppose we have the ESS over the set of strategies {mk

+1, mk+2,……,mn} with frequencies {pk+1, pk+2,……,pn}, 
and consider mk. Now  

•  E(mk;p)=-mk   and    

E(mk+1,p)=E(p,p)= 0.5Vpk+1-mk+1  
•  mk invades if W=(mk+1-mk) – Vpk+1/2 >0 and its frequency 

converges monotonically to pk=W/(W+V/2), as the 
frequencies of the other strategies converge 
monotonically to  
 {pk+1, pk+2,……,pn}/(1-pk) 



War of Attrition 

•  As we add new mi’s there is a requirement 
for gaps of sufficient sizes.  For example if 
we have m2=10 and m1=4 then we obtain  

    ESS p2=5/6 and p1=1/6 with  
E(p,p)= -19/6. Invaded by any m0<19/6.  

   In general a new strategy m0 invades iff 
m0< where p is the ESS over the 
strategies in the population > m. 



W of A: 3 strategies 
•  Example. m0=3.5, m1=4, m2=10, V=10 
   ESS p=(0, 5, 25)/30 

•  Example. m0=2, m1=4, m2=10, V=10 
ESS p=(7, 5, 25)/37 

•  Example. m0=1, m1=4, m2=10, V=10 
ESS p=(17, 5, 25)/47 



Payoffs: Discrete S={m0<m1<m2} 

m0                                      m1                                      m2 

Payoffs 
Frequencies 

Potential invaders 

P 
A 
Y 
O 
F 
F 
S 



Invasions; V=10 & range [0,10] 

•  We start with a single strategy {0} and 
then allow strategies to occur randomly, 
and if they invade they reach equilibrium 
before a new mutation occurs. 

•  Convergence is monotone 



Top m-value 

Time 

Greatest 
strategy 



Top, Second & Least: V=m=10 

Time 

  Top 
    & 
Second 
    & 
 Least 



Top, Second, Least V=m=10 

Time 

  Top 
   & 
Second 
     & 
  Least 



Frequencies of largest strategy  

Freq 

Time 



Number of Strategies 

Number of mutations 

Number 
    of 
Strategies 
    in 
   ESS 



Number of Strategies 

Number of Mutations 

Number 
     of 
Strategies 
     in 
    ESS 



E(p,p) through Time 

Number of Mutations 

Fitness 
    of 
  ESS 



Frequencies of strategies after 
1,000 steps (V=m=10) 

Freq 

Strategy 



Frequency of strategies>4 after 
10,000 steps (V=m=10)  

Strategy 

Freq 



Frequencies of strategies after 
100,000 steps (V=m=10) 



•  How is the dynamic affected by including 
the possibility of mixed strategies (i.e. 
individuals play a variety of values)? 

Mixed Strategies 



Payoffs: Discrete S={m0<m1<m2} 

m0                                      m1                                      m2 

Payoffs 
Frequencies 

Potential “pure” invaders 

P 
A 
Y 
O 
F 
F 
S 

a                                             b 

Invading mix of a & b 

mix of  



Mixed Strategies 
•  Strategies may invade which as pures could not, 

but cannot persist permanently if they contain a 
component from within the (m-V/2,m) range, 
since at some stage the better components will 
begin to give lower payoffs. 

•  Unless there is a cost associated with playing 
mixtures they will be neutral with respect to the 
ESS. 



War of Attrition 

•  The simplicity of the W of A arises from 
the ordinal nature of the payoffs.  

•  We change now to another conflict which 
has symmetric strategies, but radically 
different behaviour. 



Papier-Caillon-Ciseaux 



RRR (from Gary Larson) 



Common Side-Blotched Lizard 

Beats 

http://en.wikipedia.org/wiki/
Common_Side-blotched_Lizard 



Papier-Caillon-Ciseaux 

•  rock-scissors-paper 

•    
      R          S          P 

R 

S 

P 

C is the background fitness, ε is a cost of a tie, 
U  is the matrix of 1’s 



Theory 

•  The only possible ESS is p=(1,1,1)/3. 
•  If ε > 0 ESS at p. 
•  For the replicator dynamics with S={R,S,P}, the 

system converges to p only if 



The effect of c 

cycles 

c 

c- 

 diverge 

c+ 

converge 



RSP, c=1.3,ε=0.5 

Freq 
   of 
Rock 
   & 
Paper 

Time 



RSP, c=1.3,ε=0.5 

0.9     1.0 

1.0 

0.9 

Spirals 
    in 



RSP, c=1.1,ε=0.5 

S 

R 

P 

Start 

Spirals 
   out 



Cyclic Mixtures 

•  If we take three mixtures (x,y,z), (y,z,x) 
and (z,x,c) then the payoff matrix is just 

A* = λ(A + dU)   

where d>0, U is matrix of 1’s, λ is a 
constant (has no effect). 

Thus taking such mixture may switch from 
divergent to convergent dynamic.  



(RS*), (R*P), & (*SP); c=1.1,ε=0.5 

    Time 

Freq 
  of 
RS* 
  & 
R*P 



{S,P},R,S k=1.1,ε=0.5 

Time 

S,P 
  & 
  R 



Pures  & (R,S,P)/3 , k=1.1,ε=0.5  

Time 

    Freq 
      of 
    Rock 
       & 
  (R,S,P)/3 



Pures  & (R,S,P)/3 , k=1.1,ε=0.5 

   Freq 
     of  
   Rock 
      & 
(R,S,P)/3 

Time 



Pures  & (R,S,P)/3 , k=1.1,ε=0.5 



Pures +(R,S,P)/3 , k=1.1,ε=0.5, 
Random perturbations 

     Freq 
       of 
     Rock 

         &                       
(R,S,P)/3 

Time 



Pures+(R,S,P)/3, k=1.1,ε=0.5,     
Random Perturbations 

•     
    Freq 
      of  
    Rock 
       & 
  (R,S,P)/3 

Time / 10 



The ESS over S is “globally stable” 
under every (sensible) dynamic 

•  Suppose we have an ESS p over the 
whole S. If the population frequency is q 
then the population fitness is c+E(q,q). 
Now for p we have that for every q 
E(q,p)=E(p,p) and E(p,q)>E(q,q). Any 
dynamic for which freqt+1(r)>freqt(r) 

   if E(r,q) >E(q,q) therefore has that the 
frequency of individuals playing the ESS 
strategy will increase. 



Questions 

   Can we specify, for a system with an ESS 
over the whole space, the region               
W ε n-simplex within which there is 
convergence to the ESS?  

    Hypotheses: W is simply connected;  
                         W is an open set (unless 

whole of n-simplex);    


