Modelling Evolutionary Games

Chris Cannings, University of Sheffield,U.K. Colloquium Jacques Morgenstern Nov. 19th, 2009.

Boxing Kangaroos

Stags

®Mark Fellowes Mark Fellowes Nature Photography

The Problem

- How does ritualised fighting emerge in intra-species conflict?
- Why do individuals limit the use of their weaponry?
- Maynard Smith & Price (1973) Note How can one explain such oddities as snakes that wrestle with each other, deer that refuse to strike "foul blows", and antelope that kneel down to fight?

Games in Biology

- Fisher (1930) The Genetical Theory of Natural Selection "On the evolution of the sex-ratio".
- Kalmus(1960) Games animals play.
- Maynard Smith & Price(1973) The logic of animal conflicts.

Evolutionary Conflicts

- 2 Player, symmetric.
- Suppose each individual has a set of available strategies S.
- There is a payoff function f:SxS->R, so if an individual plays strategy x and his opponent plays strategy y then that individual receives f(x,y) (f(y,x) in general)

Additivity

 Payoffs are additive, so if an individual plays x in a population which has p(y) playing y then the expected payoff to x is

$$E(x,p) = \sum_{y} p(y) f(x,y)$$

Additivity

 Further if an individual or group of individuals plays x's with probabilities r(x), against a group playing y's with probabilities p(y) then their expected payoff is

$$E(r, p) = \sum_{x} r(x)E(x, p) = \sum_{x} \sum_{y} r(x)p(y)E(x, y)$$

Evolutionarily Stable Strategies

 Maynard Smith & Price (1973) introduced the idea of an ESS. They specified this as a strategy which if played by the population would be capable of resisting invasion by any alternative strategy.

Evolutionarily Stable Strategies

ES

• We say **p** is Evolutionarily Stable wrt **q** if

$$E(p,(1-\lambda)p+\lambda q) > E(q,(1-\lambda)p+\lambda q)$$

• Thus for λ small (mutations, fluctuations) require (1) E(p,p) > E(q,p)

or

(2)
$$E(p,p) = E(q,p) \& E(p,q) > E(q,q)$$

ESS

We say p is an ESS if, and only if, p is ES wrt every $q \neq p$.

Support and Equality

- U(p)={x; x ε S & p(x)>0} is the support of p.
- Define T(p)={x; x S & E(x,p)=E(p,p)}

ESS is an equilibrium

An ESS must be an equilibrium

i.e. E(x,p)=E(p,p) for (almost) all x ε U.

- Two individuals each choose a time to display. When the lesser time elapses the corresponding individual departs. The other collects the reward V. The cost is the time.
- This is an all-pay auction!

Who fetches the beer?

The War of Attrition

 $S = [0, \infty)$

$$E(x, y) = \begin{pmatrix} V - y & if \quad x > y \\ V / 2 - y & if \quad x = y \\ -x & if \quad x < y \end{pmatrix}$$

"The War of Attrition"

$$S = [0, \infty)$$

$$E(x, y) = \begin{cases} f(y) - y & \text{if } x > y \\ f(y)/2 - x & \text{if } x = y \\ -x & \text{if } x < y \end{cases}$$

The Unlabelled Ordinal Conflict

 $S = [0, \infty)$

$$E(x, y) = \begin{pmatrix} f(y) - g(y) & \text{if } x > y \\ f(y)/2 - g(y) & \text{if } x = y \\ -g(x) & \text{if } x < y \end{pmatrix}$$

The War of Attrition

 $S = [0, \infty)$

$$E(x, y) = \begin{pmatrix} V - y & if \quad x > y \\ V / 2 - x & if \quad x = y \\ -x & if \quad x < y \end{pmatrix}$$

There can be no atoms in an ESS except at values v where it is not permitted to play in some non-zero interval (v, w].

If there were an atom p(s) at some s then playing s⁺ (if that were possible) would have a higher payoff than s (actually by an approx. amount Vp(s)/2).

The War of Attrition

 Now an ESS p must be an equilibrium, thus for x in U(p) (the support of p) we must have

$$E(x,p) = E(p,p)$$

• So we examine

$$d(E(x,p))/dx = 0$$

The War of Attrition

$$E(x,p) = \int_{0}^{x} (V-y)p(y)dy - x \int_{x}^{\infty} p(y)dy$$

$$E(x, p) = \int_{0}^{x} (V - y)p(y)dy - x \int_{x}^{\infty} p(y)dy$$
$$dE(x, p)/dx = (V - x)p(x) - (1 - P(x)) + xp(x) = 0$$

$$E(x, p) = \int_{0}^{x} (V - y)p(y)dy - x \int_{x}^{\infty} p(y)dy$$

$$dE(x, p)/dx = (V - x)p(x) - (1 - P(x)) + xp(x) = 0$$

$$\downarrow$$

$$Vp(x) = (1 - P(x))$$

$$E(x, p) = \int_{0}^{x} (V - y)p(y)dy - x \int_{x}^{\infty} p(y)dy$$

$$dE(x, p)/dx = (V - x)p(x) - (1 - P(x)) + xp(x) = 0$$

$$\downarrow$$

$$Vp(x) = (1 - P(x))$$

$$\downarrow$$

$$p(x) = \exp(-x/V)/V$$

The War of Attrition

• For $S = [0, \infty)$ the only equilibrium is

$$p(x) = \exp(-x/V)/V$$

$$E(x,p)=0$$

So effort is perfectly converted to reward. No memory.

The War of Attrition

• Now it can be proved (Bishop & Cannings, 1976) that for all p and q E((p-q), (p-q)) = $(E(p-q), E(q-p)) = E(q-q) \le 0$

$$(E(p,p)-E(q,p))-(E(p,q)-E(q,q)) \le 0$$

with equality only when p=q.

• So given the p (an equilibrium) above it follows that p is an ESS.

Finite Time

 In practice individuals may well be limited in how long they may play e.g. by the onset of sunset, etc.

Finite Interval [0,m]

• Neg. Exp. over [0,m-v/2] and Atom at m.

Discrete Plays

 Individuals may be constrained to always play the same (pure) strategy, e.g. they may need to "pick" the size of their weapons, as they will grow.

Discrete Space

 Suppose S={m₀,m₁,m₂,...,m_{k-1},m_k} where m_i<m_{i+1} all i. Then (we revisit later) obtain a unique ESS, with atoms on a subset of S, e.g.

Discrete S

- Suppose that $T = \{x_0, x_1, \dots, x_n\} \subset S$. So we have vectors of frequencies over T.
- Suppose A is the payoff matrix i.e a_{ij}=f(i,j) i,j ∈ T, then we seek ESS which is equilibrium p, i.e. require

$$Ap = c1$$

• so need

$$p = A^{-1} 1 / 1^T A^{-1} 1 > 0$$

p is an equilibrium

- For p an equilibrium over T to be an ESS we require that E(x,p)<E(p,p) all x ε S\T and that C=(c_{ij})=(a_{ij}-a_{in}-a_{nj}+a_{nn}) is negative definite (see Haigh, 1975 & Abukucs, 1977)
- NB. If we take a set of mixtures which span the space then the condition above is still sufficient even though the payoff matrix will be very different.

Discrete S

- Thus to find all ESS's we need to examine all the possible T i.e.(2ⁿ-1) cases.
- However Bishop and Cannings proved that if there is an ESS on some T then there cannot be an ESS on a subset of T.

Discrete S

- Broom, Cannings, Vickers proved many other restrictions on the coexistence of ESS's for general matrix games.
- Example. Cannot have ESS's on {1,2}, {1,3} and {2,3} simultaneously.
Patterns of ESS's: n=5

EVOLUTIONARILY

STABLE

STRATEGY

EVOLUTIONARILY

STABLE

IT IS NOT A STRATEGY

- To be a strategy there must be a proper specification of what plays are available to the individuals.
- The ESS describes the overall play of the population (average).

EVOLUTIONARILY

IT IS NOT STABLE

 To be stable a system needs a properly specified dynamic; i.e. a description of how the frequencies of the strategies change as a result of the conflicts.

The Replicator Dynamic

• The simplest dynamic supposes that the frequency of a strategy i (properly specified) at time (discrete) t , say, is given by X_t^i in p_t

$$x_{t+1}^{i} = x_{t}^{i} (c + E(i, p_{t})) / (c + E(p_{t}, p_{t}))$$

= $x_{t}^{i} \{ \sum_{j=1}^{n} (c + a_{i,j} x_{t}^{j}) \} / \{ \sum_{j=1}^{n} \sum_{k=1}^{n} (c + a_{j,k}) x_{t}^{j} x_{t}^{k} \}$

Here $A=(a_{i,j})$ is the payoff matrix, c is the constant background fitness, p_t is the population strategy frequency.

The Replicator Dynamic

- Note that the value of c does not affect the set of ESS's.
- It may affect the behaviour of the dynamic.

W of A

- In the War of Attrition on any S (of pure plays) in fact there is a unique ESS (ignoring sets of measure zero).
- Moreover under the replicator dynamic convergence is assured.
- The value of c is irrelevant to the dynamics.

War of Attrition; 2 strategies $m_{n-1} < m_n$

Payoff matrix

$$\begin{bmatrix} V/2 - m_{n-1} & -m_{n-1} \\ V - m_{n-1} & V - m_n \end{bmatrix}$$

If $(m_n - m_{n-1}) > V/2$ there is a polymorphic ESS Otherwise only m_n present.

Frequency of m_n 0

1

Convergence of the frequencies is monotone

War of Attrition

• Payoff Matrix
0 1 2 n-2 n-1 n
1
$$V^{-}m_{0} -m_{0} -m_{0} -m_{0} -m_{0} -m_{0} -m_{0} -m_{0}$$

1 $V^{-}m_{0} V^{-}2-m_{1} -m_{1} -m_{1} -m_{1} -m_{1} -m_{1} -m_{1}$
2 $V^{-}m_{0} V^{-}m_{1} V^{-}2-m_{2} -m_{2} -m_{2} -m_{2} -m_{2}$
.... $V^{-}m_{0} V^{-}m_{1} V^{-}m_{2} -m_{1} -m_{1} -m_{1} -m_{1}$
n-2 $V^{-}m_{0} V^{-}m_{1} V^{-}m_{2} -m_{2} -m_{2} -m_{2} -m_{2}$
 $V^{-}m_{0} V^{-}m_{1} V^{-}m_{2} -m_{1} V^{-}m_{2} -m_{1} V^{-}m_{2} -m_{1} V^{-}m_{1} V^{-}m_{2}$

War of Attrition: Discrete S

- Noting that the entries in the rows from i to n up to the (i-1)th position are identical we see that the equilibria over some T and some W ⊃ T must have precisely the same relative frequencies over the set T.
- Thus we can find the ESS's by working sequentially from m_n to $\{m_n, m_{n-1}, m_{n-1}\}$ to $\{m_n, m_{n-1}, m_{n-1}\}$ and so on.

$m_k \text{ vis-à-vis } \{m_{k+1}, m_{k+2}, \dots, m_n\}$

- Suppose we have the ESS over the set of strategies {m_k $_{+1}$, m_{k+2},....,m_n} with frequencies {p_{k+1}, p_{k+2},....,p_n}, and consider m_k. Now
- $E(m_k;p)=-m_k$ and

$E(m_{k+1},p)=E(p,p)=0.5Vp_{k+1}-m_{k+1}$

• m_k invades if $W=(m_{k+1}-m_k) - Vp_{k+1}/2 >0$ and its frequency converges monotonically to $p_k=W/(W+V/2)$, as the frequencies of the other strategies converge monotonically to $\{p_{k+1}, p_{k+2}, \dots, p_n\}/(1-p_k)$

War of Attrition

 As we add new m_i's there is a requirement for gaps of sufficient sizes. For example if we have $m_2=10$ and $m_1=4$ then we obtain ESS $p_2=5/6$ and $p_1=1/6$ with E(p,p)=-19/6. Invaded by any $m_0 < 19/6$. In general a new strategy m₀ invades iff m_0 < where p is the ESS over the

strategies in the population > m.

W of A: 3 strategies

- Example. m₀=3.5, m₁=4, m₂=10, V=10 ESS p=(0, 5, 25)/30
- Example. m₀=2, m₁=4, m₂=10, V=10 ESS p=(7, 5, 25)/37

 Example. m₀=1, m₁=4, m₂=10, V=10 ESS p=(17, 5, 25)/47

Payoffs: Discrete S={m₀<m₁<m₂}

Invasions; V=10 & range [0,10]

- We start with a single strategy {0} and then allow strategies to occur randomly, and if they invade they reach equilibrium before a new mutation occurs.
- Convergence is monotone

Top m-value

Top, Second & Least: V=m=10

Top, Second, Least V=m=10

Time

Frequencies of largest strategy

Number of Strategies

Number of mutations

Number of Strategies

E(p,p) through Time

Frequencies of strategies after 1,000 steps (V=m=10)

Frequency of strategies>4 after 10,000 steps (V=m=10)

Frequencies of strategies after 100,000 steps (V=m=10)

Mixed Strategies

 How is the dynamic affected by including the possibility of mixed strategies (i.e. individuals play a variety of values)?

Payoffs: Discrete S={m₀<m₁<m₂}

Mixed Strategies

- Strategies may invade which as pures could not, but cannot persist permanently if they contain a component from within the (m-V/2,m) range, since at some stage the better components will begin to give lower payoffs.
- Unless there is a cost associated with playing mixtures they will be neutral with respect to the ESS.

War of Attrition

- The simplicity of the W of A arises from the ordinal nature of the payoffs.
- We change now to another conflict which has symmetric strategies, but radically different behaviour.

Papier-Caillon-Ciseaux

RRR (from Gary Larson)

Common Side-Blotched Lizard

http://en.wikipedia.org/wiki/ Common_Side-blotched_Lizard

Beats

Papier-Caillon-Ciseaux

rock-scissors-paper

-SCISSOIS-paper $R \quad S \quad P$ $A = cU + \begin{pmatrix} \varepsilon & 1 & -1 \\ -1 & -\varepsilon & 1 \\ 1 & -1 & -\varepsilon \end{pmatrix} \quad R$ $R \quad S \quad P$

C is the background fitness, ε is a cost of a tie, *U* is the matrix of 1's

Theory

- The only possible ESS is $\mathbf{p}=(1,1,1)/3$.
- If $\varepsilon > 0$ ESS at p.
- For the replicator dynamics with S={R,S,P}, the system converges to p only if

$$c > (1 + \varepsilon^2) / 2\varepsilon$$

RSP, c=1.3, ε=0.5

Cyclic Mixtures

 If we take three mixtures (x,y,z), (y,z,x) and (z,x,c) then the payoff matrix is just

 $A^* = \lambda(A + dU)$

where d>0, U is matrix of 1's, λ is a constant (has no effect).

Thus taking such mixture may switch from divergent to convergent dynamic.

(RS*), (R*P), & (*SP); c=1.1,ε=0.5

$\{S,P\},R,S k=1.1,\epsilon=0.5$

S,P

&

R

Pures & (R,S,P)/3 , $k=1.1,\epsilon=0.5$

Pures & (R,S,P)/3 , $k=1.1,\epsilon=0.5$

Pures & (R,S,P)/3 , $k=1.1,\epsilon=0.5$

Pures+**(R,S,P)**/3, k=1.1,ε=0.5, Random Perturbations

Freq of Rock & (R,S,P)/3

The ESS over S is "globally stable" under every (sensible) dynamic

Suppose we have an ESS p over the whole S. If the population frequency is q then the population fitness is c+E(q,q). Now for p we have that for every q E(q,p)=E(p,p) and E(p,q)>E(q,q). Any dynamic for which freq^{t+1}(r)>freq^t(r)

if E(r,q) > E(q,q) therefore has that the frequency of individuals playing the ESS strategy will increase.

Questions

Can we specify, for a system with an ESS over the whole space, the region W ε n-simplex within which there is convergence to the ESS? Hypotheses: W is simply connected; W is an open set (unless whole of n-simplex);