Theories of Computation for Continuous Systems. Computing with Analog Models.

Olivier Bournez

Ecole Polytechnique Laboratoire d'Informatique de l'X Palaiseau, France

Colloquium Morgenstern 15 March 2012

Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

Sub-menu

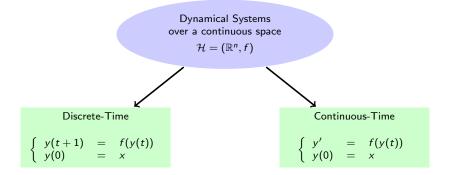
Motivation

Overal objective

Motivation 1: Verification, Control Theory Motivation 2: Models of Computations

Overall objective

Main objective Understand computation theories for CONTINUOUS systems.



Continuous Systems Theory

Verification Control Theory Recursive Analysis Computation Theory Complexity Theory

GPAC Neural Networks Analog Automata Distributed Computing

Machines

Models from Physics, Biology, . . .

Continuous Systems Theory

Verification Control Theory Recursive Analysis Computation Theory Complexity Theory

Models from Physics, Biology, ...

Sub-menu

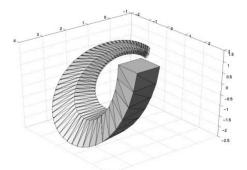
Motivation

Overal objective Motivation 1: Verification, Control Theory Motivation 2: Models of Computations

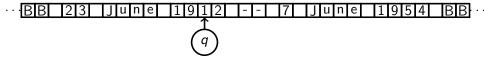
Main Focus

Verification and Control Theory

- Reachability. Given *H*, x₀, *X* ⊂ ℝⁿ, decide if there is a trajectory going from x₀ to *X*.
- **Stability**. Given \mathcal{H} , decide if all trajectories go to the origin.



Alan M. Turing



BB A TM is a Dynamical System BB q Image: second second

A Turing machine is a particular discrete-time discrete-space dynamical systems.

 A Turing machine over alphabet Σ corresponds to a discrete time dynamical system

··· BB A TM is a DУ namicali SУ stem BB q q

A Turing machine is a particular discrete-time discrete-space dynamical systems.

 A Turing machine over alphabet Σ corresponds to a discrete time dynamical system

$$(Q \times \mathbb{N} \times \Sigma^*, \vdash).$$

··· BB A TM is a DУ namicali SУ stem BB q q

A Turing machine is a particular discrete-time discrete-space dynamical systems.

 A Turing machine over alphabet Σ corresponds to a discrete time dynamical system

BB A TM is a D y n a B ... q q

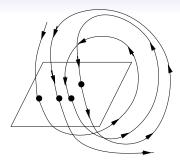
A Turing machine is a particular discrete-time discrete-space dynamical systems.

 A Turing machine over alphabet Σ corresponds to a discrete time dynamical system

As $\mathbb{N} \subset \mathbb{R},$ it can be embedded into a continuous space dynamical system

$$(\mathbb{R}^m, f)$$

Dynamic Undecidability

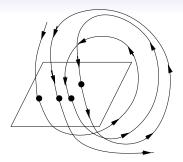


Dynamic Undecidability Results:

[Moore90]

- [Ruohonen93]
- [Siegelmann-Sontag94]
- [Asarin-Maler-Pnueli95]
- [Branicky95]
- [Graça-Campagnolo-Buescu2005]

Dynamic Undecidability



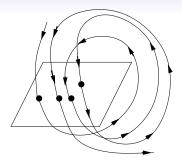
Dynamic Undecidability Results:

[Moore90]

- [Ruohonen93]
- [Siegelmann-Sontag94]
- [Asarin-Maler-Pnueli95]
- [Branicky95]
- [Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical systems are hard, from a computability and complexity point of view.

Dynamic Undecidability



Dynamic Undecidability Results:

[Moore90]

- [Ruohonen93]
- [Siegelmann-Sontag94]
- [Asarin-Maler-Pnueli95]
- [Branicky95]
- [Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical systems are hard, from a computability and complexity point of view.

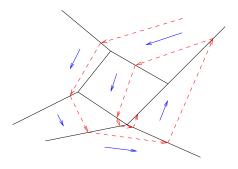
PROBLEMATIC !!

Amazing/EVEN MORE Problematics facts about continuous time systems

- Space contraction.
- Time contraction.
- Zeno's paradox phenomenon.

Piecewise Constant Derivative systems

PCD systems [Asarin-Maler-Pnueli94]:



$$dx/dt = f(x)$$

with $f : \mathbb{R}^d \to \mathbb{Q}^d$ piecewise constant:

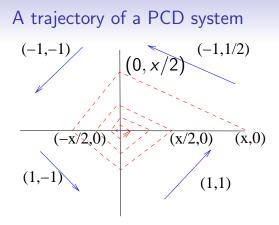
- 1. Range(f) = C, $\#C < \infty$
- for all c ∈ C, f⁻¹(c) is a finite union of polyhedral convex subsets of ℝ^d.

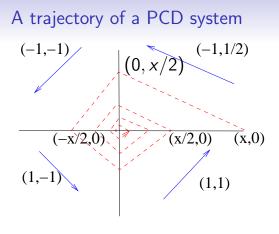
PCD systems in finite discrete time

Discrete time: number of regions crossed.

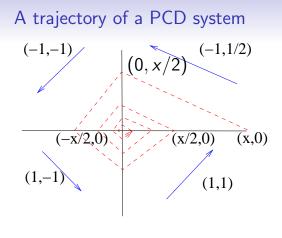
Theorem:

- 1. The reachability problem for PCD systems of dimension 2 is decidable [Asarin-Maler-Pnueli95].
- PCD systems of dimension d ≥ 3 can simulate Turing machines [Asarin-Maler-Pnueli95].





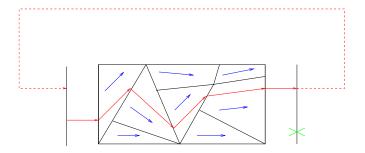
5/2(x + x/2 + x/4 + ...) = 5



5/2(x + x/2 + x/4 + ...) = 5

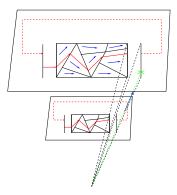
Observation [Zeno -490/-425]: to a finite continuous time can correspond a transfinite discrete time.

IDEA: Abstract 2-dimensional Representation of a 3-dimensional Turing Machine



IDEA: The Same But With Dimensions Divided by 2

IDEA: Recognizing the Halting Problem of a Turing Machine in dimension 4



In continuous time? [Bournez99]

Continuous time: time taken by the trajectory.

Dimension	Languages semi-recognized
2	$< \Sigma_1$
3	Σ_1
4	Σ_2
5	Σ_ω
6	$\Sigma_{\omega+1}$
7	$rac{{{\Sigma _{{\omega ^2}}}}}{{{\Sigma _{{\omega ^2} + 1}}}}$
8	Σ_{ω^2+1}
2p+1	$\sum_{\omega^{p-1}}$
2p+2	$rac{\sum_{\omega^{ ho-1}}}{\sum_{\omega^{ ho-1}+1}}$

Extending [Asarin-Maler95].

Smooth version

[Ruohonen97]: Space and time contractions can be used to prove that systems (\mathbb{R}^m, f) , with f smooth (i.e. \mathcal{C}^{∞}), on a compact finite-dimensional domain, can simulate arbitrary Turing machines.

[Moore98] conjecture: No analytic function on a compact, finite-dimensional space, can simulate a Turing machine trough a reasonable input and output encoding.

Sub-menu

Motivation

Overal objective Motivation 1: Verification, Control Theory Motivation 2: Models of Computations

Continuous Systems Theory

Verification Control Theory Recursive Analysis Computation Theory Complexity Theory

GPAC Neural Networks Analog Automata Distributed Computing

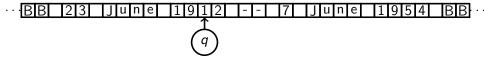
Machines

Models from Physics, Biology, . . .

GPAC Neural Networks Analog Automata Distributed Computing

Machines

Alan M. Turing



The digital world

Many models of computations:

- ▶ Recursive functions, Kurt Gödel, 1931-34.
- ► Turing machines, Alan Turing, 1936.
- λ -calculus, Alonzo Church, 1936.
- Post systems
- ▶ ...

But, equivalent

- at the computability level, through Church Turing's thesis
- ▶ and also roughly equivalent at the complexity level: P, NP, ...

The digital world

Many models of computations:

- ▶ Recursive functions, Kurt Gödel, 1931-34.
- Turing machines, Alan Turing, 1936.
- > λ -calculus, Alonzo Church, 1936.
- Post systems
- ▶ ...

But, equivalent

- at the computability level, through Church Turing's thesis
- ▶ and also roughly equivalent at the complexity level: P, NP, ...

• These are digital models: time is discrete, space is discrete.

What about analog models?

The (digital) Picture

Church Thesis	"What is effectively calculable is computable"
Thesis M	"What can be calculated by a machine is computable"
Thesis?	"What can be calculated by a model is computable"

(following [Copeland2002])

Understanding computational power of models helps to understand

- limits of mechanical reasoning.
- limits of machines.
- limits of models.

Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

Sub-menu

Analog Models of Computations Some Analog Computers

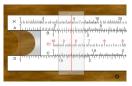
- A model from 19th Century: Rivets' mechanisms
- A machine from 20th Century: Differential analyzers
- A model from 21th century: Computing with Populations

Some Analog Computers

Antikythera Mechanism

(-87, authors?)

Slide Rule



(1620 - 1630, Napier, Gunter, Wingate)

Planimeter

(1814, Hermann) MONIAC/Financephalograph

(1949, Phillips)

Sub-menu

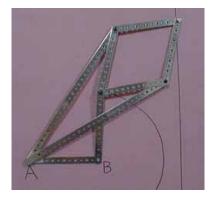
Analog Models of Computations

Some Analog Computers A model from 19th Century: Rivets' mechanisms A machine from 20th Century: Differential analyzers A model from 21th century: Computing with Population

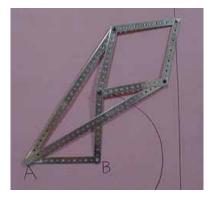
Rivets' mechanisms.

• How to realize an homothety: the pantograph.

 How to transform a circular into a linear motion: Peaucellier's mechanism (1864 - 1871).

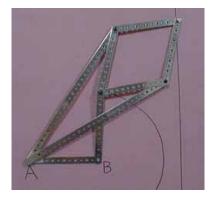


 How to transform a circular into a linear motion: Peaucellier's mechanism (1864 - 1871).



Computational power of Rivets's mechanisms?

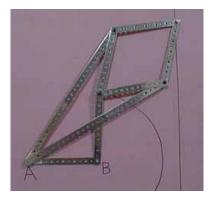
 How to transform a circular into a linear motion: Peaucellier's mechanism (1864 - 1871).



Computational power of Rivets's mechanisms?

• Theorem [Kempke]: computable iff semi-algebraic.

 How to transform a circular into a linear motion: Peaucellier's mechanism (1864 - 1871).



Computational power of Rivets's mechanisms?

 Theorem [Kempke]: computable iff semi-algebraic.
 Voir aussi: "De la nécessité de tracer les droites au compas", Pierre Damphousse, Fête de la Science.

Formally

Theorem (Computational power of planar mechanisms)

- For any non-empty semi-algebraic set S, there exists a mechanism with n points that move on linear segments, but that are free to move on these segments, and that forces the relation (x₁,...,x_n) ∈ S, where x_i are the distances on the linear segments.
- Conversely, the domain of evolution of any finite planar mechanism is semi-algebraic.

(theorem attributed to Kempke).

Sub-menu

Analog Models of Computations

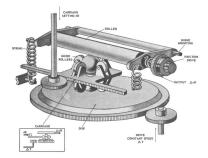
Some Analog Computers A model from 19th Century: Rivets' mechanisms A machine from 20th Century: Differential analyzers A model from 21th century: Computing with Populations

A machine from 20th Century: Differential analyzers

Vannevar Bush's 1938 mechanical Differential Analyser

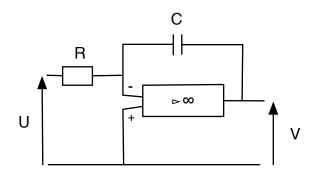
- Underlying principles: Lord Kelvin 1876.
- First ever built: V. Bush 1931 at MIT.
- Applications: from gunfire control up to aircraft design
- Intensively used during U.S. war effort.
 - Electronic versions from late 40s, used until 70s

A Mechanical Integrator



Bureau of Naval Personnel, Basic Machines and How They Work, 1964

A Modern Electronic Integrator



$$V(t) = -1/RC \int_0^t U(t)dt$$

Electronic Differential Analyzer

Advertisements in Scientific American, March 1953.

Electronic Differential Analyzer

Advertisements in Scientific American, March 1953.

See also:

Doug Coward's Analog Computer Museum

http://dcoward.best.vwh.net/analog/

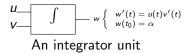
The General Purpose Analog Computer

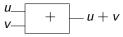
The GPAC

A mathematical abstraction from Claude Shannon (1941) of the Differential Analyzers.

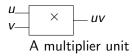
Basic units:

A constant unit

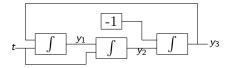




An adder unit



Example: Generating cos and sin via a GPAC

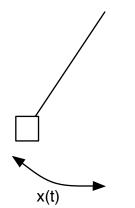


$$\begin{cases} y_1' = y_3 & \& & y_1(0) = 1\\ y_2' = y_1 & \& & y_2(0) = 0\\ y_3' = -y_2' & \& & y_3(0) = 0 \end{cases}$$

$$y_1 = \cos(t), y_2 = \sin(t), y_3 = -\sin(t).$$

Programming with GPACs: Example. Pendulum Suppose you want to solve

$$x'' + p^2 \sin(x) = 0.$$

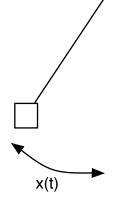


Programming with GPACs: Example. Pendulum Suppose you want to solve

$$x'' + p^2 \sin(x) = 0.$$

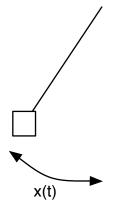
Program: Let's define

$$\begin{cases} y = x' \\ z = \sin(x) \\ u = \cos(x) \end{cases}$$



Programming with GPACs: Example. Pendulum Suppose you want to solve





Program: Let's define

$$\begin{cases} y = x' \\ z = \sin(x) \\ u = \cos(x) \end{cases}$$

To get

$$\begin{cases} x' = y \\ y' = -p^2 z \\ z' = y u \\ u' = -y z \end{cases}$$

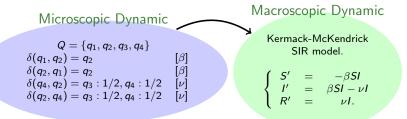
.

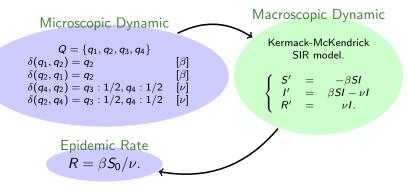
Sub-menu

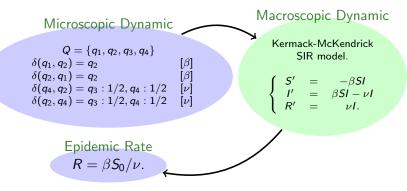
Analog Models of Computations

Some Analog Computers A model from 19th Century: Rivets' mechanisms A machine from 20th Century: Differential analyzers A model from 21th century: Computing with Populations

 $\begin{array}{ll} Q = \{q_1, q_2, q_3, q_4\} \\ \delta(q_1, q_2) = q_2 & [\beta] \\ \delta(q_2, q_1) = q_2 & [\beta] \\ \delta(q_4, q_2) = q_3 : 1/2, q_4 : 1/2 & [\nu] \\ \delta(q_2, q_4) = q_3 : 1/2, q_4 : 1/2 & [\nu] \end{array}$







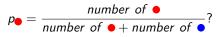
Question

Programming/Computing with Such models?

A model from 21th century: Computing with Large Populations

- My favourite example:
 - ► States: {●,●}
 - Rules of interactions:

What can we say about



This is a model

- inspired from [Angluin, Aspnes, Diamadi, Fischer, Peralta 2004]'s Population Protocoles introduced in the context of distributed systems / (anonymous) sensor networks.
- but with a large population hypothesis.

Informal approach on this example

■ The mean number of ● created,

$$b(p_{\bullet}) = -1 * p_{\bullet}^{2} + 1 * p_{\bullet}(1 - p_{\bullet}) + 1 * p_{\bullet}(1 - p_{\bullet}) + 1 * (1 - p_{\bullet})^{2}$$

= 1 - 2p_{\bullet}^{2}

must be equal, at the limit to 0, and hence

$$p_{\bullet}=\frac{\sqrt{2}}{2},$$

at the limit.

In other words,

this protocol **computes** real number $\frac{\sqrt{2}}{2}$.

Main result

 ν is computable by an LPP

if and only if

 $\nu \in [0,1]$ is algebraic.

Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

What can be generated by a GPAC?

- The purpose of Shannon's 41 paper is a characterization of GPAC generable functions.
- Shannon's 41 characterization is incomplete: Several problems, even about definitions, corrected by [PourEl-Richards74], [Lipshitz-Rubel87], [Graça-Costa03].
- For the better defined class considered in [Graça-Costa03].

Proposition (Graça-Costa03)

A scalar function $f : \mathbb{R} \to \mathbb{R}$ is generated by a GPAC iff it is a component of polynomial continuous time dynamical system.

What can be generated by a GPAC?

- The purpose of Shannon's 41 paper is a characterization of GPAC generable functions.
- Shannon's 41 characterization is incomplete: Several problems, even about definitions, corrected by [PourEl-Richards74], [Lipshitz-Rubel87], [Graça-Costa03].
- For the better defined class considered in [Graça-Costa03].

Proposition (Graça-Costa03)

A scalar function $f : \mathbb{R} \to \mathbb{R}$ is generated by a GPAC iff it is a component of polynomial continuous time dynamical system.

• These functions will be also called *pIVP* functions.

Formally:

For the better defined class considered in [Graça-Costa03], a scalar function f : ℝ → ℝ is generated by a GPAC iff

$$f(t)=y_i(t)$$

for $y(t) \in \mathbb{R}^m$ solution of

$$\begin{cases} y' = p(t, y), \\ y(0) = x \end{cases}$$
(1)

where p is (a vector of) polynomials.

Formally:

For the better defined class considered in [Graça-Costa03], a scalar function f : ℝ → ℝ is generated by a GPAC iff

$$f(t)=y_i(t)$$

for $y(t) \in \mathbb{R}^m$ solution of

$$\begin{cases} y' = p(t, y), \\ y(0) = x \end{cases}$$
(1)

where p is (a vector of) polynomials.

• These functions will be also called *pIVP* functions.

Uncomputability (Ungenerability) Results

Consequence: A GPAC generated unary function $f : I \subset \mathbb{R} \to \mathbb{R}$ must be differentially algebraic (d.a.):

i.e. it satisfies some algebraic differential equation of the form $p(t, y, y', ..., y^{(n)}) = 0$, where p is a non-zero polynomial in all its variables.

Non-d.a. functions:

- Gamma function $\Gamma(x) = \int_0^\infty t^{x-1} e^{-t} dt$ [Hölder 1887].
- Riemann's Zeta function $\zeta(x) = \sum_{k=0}^{\infty} \frac{1}{k^x}$ [Hilbert].

Menu

Motivation

Analog Models of Computations

Analog Computability

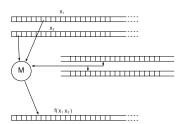
Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

Recursive Analysis

Due to Turing, Grzegorczyk, Lacombe. Here presentation from Weihrauch.



A tape represents a real number Each real number x is represented via an infinite sequence $(x_n)_n \in \mathbb{Q}$,

$$||x_n-x|| \le 2^{-n}.$$

M behaves like a Turing Machine Read-only one-way input tapes Write-only one-way output tape. M outputs a representation of $f(x_1, x_2)$ from representations of x_1 , x_2 .

Solving ODEs and computability

Pour-El Richards 79:

▶ There exists some computable $f : [0,1] \times [-1,1] \rightarrow \mathbb{R}$ such that ordinary differential equation

$$y'=f(t,y),$$

has no computable solution over any closed domain.

- Graça Zhong Buescu 2007:
 - ▶ If $f : [0,1] \times [-1,1] \rightarrow \mathbb{R}$ is computable and ordinary differential equation

$$y'=f(t,y),$$

has a **unique** solution, then it must be computable.

Moral on Analog Models of Computations

Summary:

 $\mathsf{GPAC}\ \mathsf{generable} \subsetneq \mathsf{Computable}$

With more details:

- [Graça Zhong Buescu 2007] Let f : (α, β) ⊂ ℝ → ℝ^k be some pIVP function with computable parameters. Then f is computable on (α, β).
- pIVP functions must be analytic.
- Computable functions include some non-analytic functions (ex: min(x, 0)).
- Gamma function and Riemann's Zeta function are computable.

Criticisms

We stated

$\mathsf{GPAC} \text{ generable} \subsetneq \mathsf{Computable}.$

 However, the notion of GPAC generated function assumes computation in "real time" - a very restrictive form of computation.

Criticisms

We stated

 $\mathsf{GPAC} \text{ generable} \subsetneq \mathsf{Computable}.$

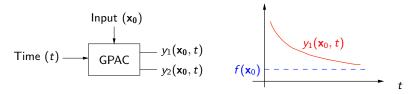
- However, the notion of GPAC generated function assumes computation in "real time" - a very restrictive form of computation.
- What happen if we change this notion of computability to the kind of "converging computation" used in recursive analysis,

GPAC Computability vs GPAC Generation

Definition

A function $f : [a, b] \to \mathbb{R}$ is GPAC-computable iff there exist some computable polynomials $p : \mathbb{R}^{n+1} \to \mathbb{R}^n$, $p_0 : \mathbb{R} \to \mathbb{R}$, and n-1 computable real values $\alpha_1, ..., \alpha_{n-1}$ such that:

- 1. $(y_1, ..., y_n)$ is the solution of the Cauchy problem y' = p(y, t)with initial condition $(\alpha_1, ..., \alpha_{n-1}, p_0(x))$ set at time $t_0 = 0$
- 2. $\lim_{t\to\infty} y_2(t) = 0$ 3. $|f(x) - y_1(t)| \le y_2(t)$ for all $x \in [a, b]$ and all $t \in [0, +\infty)$.



Graça 04's Result

Proposition (Graça 04)

The Gamma function Γ is GPAC-computable.

(so is the ζ function)

Bournez, Campagnolo, Graça, Hainry's result

Theorem

Let a and b be computable reals. A function $f : [a, b] \rightarrow \mathbb{R}$ is computable iff it is GPAC-computable.

In a provocative way:

GPAC is not weaker than modern machines, from a computability point of view.

Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

An Other Morality & A BIG question?

- $TIME_{TM}(t) \subseteq TIME_{GPAC}(t)$.
- Important question:
 - Formulation 1: Can GPAC compute faster than Turing machines?
 - ► Formulation 2: $TIME_{GPAC}(t) \subseteq TIME_{TM}(t)$?

An Other Morality & A BIG question?

- $TIME_{TM}(t) \subseteq TIME_{GPAC}(t)$.
- Important question:
 - Formulation 1: Can GPAC compute faster than Turing machines?
 - ► Formulation 2: $TIME_{GPAC}(t) \subseteq TIME_{TM}(t)$?
 - Formulation 3: Can (at least polynomial) ordinary differential equations be solved in polynomial time?

Usual methods problems:

Finite order method

Usual methods problems:

- Finite order method
 - $\Rightarrow \mathsf{Not} \ \mathsf{polynomial}$

Usual methods problems:

- Finite order method
 - $\Rightarrow \mathsf{Not} \ \mathsf{polynomial}$

Assume compact domain or Lipschitz constant: $||p(a) - p(b)|| \le L||a - b||$

Usual methods problems:

- Finite order method
 - $\Rightarrow \mathsf{Not} \ \mathsf{polynomial}$
- Assume compact domain or Lipschitz constant: ||p(a) - p(b)|| ≤ L||a - b|| ⇒ Useless algorithms for our theoretical analysis

Usual methods problems:

- Finite order method
 - $\Rightarrow \mathsf{Not} \ \mathsf{polynomial}$
- Assume compact domain or Lipschitz constant: ||p(a) - p(b)|| ≤ L||a - b|| ⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

Usual methods problems:

- Finite order method
 - $\Rightarrow \mathsf{Not} \ \mathsf{polynomial}$
- Assume compact domain or Lipschitz constant: ||p(a) - p(b)|| ≤ L||a - b|| ⇒ Useless algorithms for our theoretical analysis

Solutions

- Unbounded order method
- No assumptions on the domain

Usual methods problems:

- Finite order method
 - $\Rightarrow \mathsf{Not} \ \mathsf{polynomial}$
- Assume compact domain or Lipschitz constant: ||p(a) - p(b)|| ≤ L||a - b|| ⇒ Useless algorithms for our theoretical analysis

Solutions

- Unbounded order method
- No assumptions on the domain
- Do not assume Lipschitz functions

Usual methods problems:

- Finite order method
 - $\Rightarrow \mathsf{Not} \ \mathsf{polynomial}$
- Assume compact domain or Lipschitz constant: ||p(a) - p(b)|| ≤ L||a - b|| ⇒ Useless algorithms for our theoretical analysis

Solutions

- Unbounded order method
- No assumptions on the domain
- Do not assume Lipschitz functions

 \Rightarrow New problems !

A solution

We want to solve:

$$\begin{cases} y' = p(y) \\ y(t_0) = y_0 \end{cases}$$

A result (submitted):

A simple algorithm: variable order multi-step Taylor methodTricky proof: error analysis and parameter choices

Main benefits: The proposed method is indeed polynomial !!

The algorithm

Algorithm 1: SolvePIVP

- **input** : The initial condition $(t_0, y_0) \in \mathbb{Q} \times \mathbb{Q}^d$
- **input** : The polynomial *p* of the PIVP
- **input** : The total time step $T \in \mathbb{Q}$
- **input** : The precision ξ requested
- **input** : The number of steps N
- **input** : The order of the method ω output: $x \in \mathbb{O}^d$
- hegin

$$2 \quad | \quad \Delta \leftarrow \frac{T}{N}$$

$$3 \qquad x \leftarrow y_0$$

4 5

for
$$n \leftarrow 1$$
 to N do
 $x \leftarrow \sum_{i=0}^{\omega-1} \frac{\Delta^i}{i!}$ NthDeriv $(p, t_0 + n\Delta, x, \omega, \xi + \Delta)$

Main Result: Technical View

Theorem Let $k = \deg(p), \ \mu \ge 2, \ T \in \mathbb{Q}_+, Y \in \mathbb{Q}$ such that $Y \ge \sup_{t_0 \le u \le t_0 + T} \|y(u)\|_{\infty}$

Then Previous Algorithm guarantees

$$\left\|y(t_0 + T) - \mathsf{SolvePIVP}(t_0, \tilde{y}_0, p, T, \omega, N, \omega)\right\|_{\infty} \leqslant e^{-\mu}$$

with the following parameters

$$\Delta = \frac{T}{N}$$
 $M = (2 + Y)^k$ $A = d(1 + k!\Sigma pM)$ $N = \lceil TeA \rceil$

 $B = k4^{k} \Sigma p \Delta M \quad \omega = 2 + \mu + \ln(N) + NB \quad \left\| y_{0} - \tilde{y}_{0} \right\|_{\infty} \leqslant e^{-NB - \mu - 1}$

Morality on Analog Computations

■ Morality: TIME_{GPAC}(t) ⊆ TIME_{TM}(t) for pIVP functions that stay bounded or polynomially bounded.

$$Y \geqslant \sup_{t_0 \leqslant u \leqslant t_0 + T} \|y(u)\|_{\infty}$$

- **Next question:** Is $TIME_{TM}(t) \subseteq TIME_{GPAC}(t)$ true for such functions.
- I.e. Derive a class of ODEs such that

$$Poly - Time_{TM} = Poly - Time_{ODE}$$
.

Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

Conclusions

- We saw various analog models of computations.
- No possible unification of all analog models:
 - Computability: Several models are provably different.
 - Complexity:
 - Even defining the time of a computation is problematic for some of them.

For the GPAC model

Important notice: the GPAC is the only "general purpose" "physically motivated" model that we presented.

Analog Computability / Complexity:

- GPAC generable \subsetneq Computable.
- Computability: GPAC computable = Computable.
- Close to a notion of complexity for GPAC.

Promissing perspective:

 Towards a complexity theory for analog models of computations.

The (digital) Picture

Church Thesis	"What is effectively calculable is computable"
Thesis M	"What can be calculated by a machine is computable"
Thesis?	"What can be calculated by a model is computable"

(following [Copeland2002])

Understanding computational power of models helps to understand

- limits of mechanical reasoning.
- limits of machines.
- limits of models.