
Theories of Computation for Continuous Systems.
Computing with Analog Models.

Olivier Bournez

Ecole Polytechnique
Laboratoire d’Informatique de l’X

Palaiseau, France

Colloquium Morgenstern
15 March 2012

1



Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

2



Sub-menu

Motivation
Overal objective
Motivation 1: Verification, Control Theory
Motivation 2: Models of Computations

3



Overall objective

Main objective

Understand computation theories for CONTINUOUS systems.

Dynamical Systems
over a continuous space

H = (Rn, f )

Discrete-Time{
y(t + 1) = f (y(t))
y(0) = x

Continuous-Time{
y ′ = f (y(t))
y(0) = x

4



Verification
Control Theory

Recursive Analysis
Computation Theory
Complexity Theory

...

GPAC
Neural Networks

Analog Automata
Distributed Computing

...Machines

Continuous Systems Theory

Models from Physics,
Biology, . . .

5



Verification
Control Theory

Recursive Analysis
Computation Theory
Complexity Theory

...

GPAC
Neural Networks

Analog Automata
Distributed Computing

...Machines

Continuous Systems Theory

Models from Physics,
Biology, . . .

5



Sub-menu

Motivation
Overal objective
Motivation 1: Verification, Control Theory
Motivation 2: Models of Computations

6



Main Focus

Verification and Control Theory

Reachability. Given H, x0, X ⊂ Rn, decide if there is a
trajectory going from x0 to X .

Stability. Given H, decide if all trajectories go to the origin.

7



Alan M. Turing

. . .B B 2 3 J u n e 1 9 1 2 - - 7 J u n e 1 9 5 4 B B. . .

q

8



Preliminary: Digital World = Discrete Time and Space

. . .B B A T M i s a D y n a m i c a l S y s t e m B B. . .

q

A Turing machine is a particular discrete-time discrete-space
dynamical systems.

A Turing machine over alphabet Σ corresponds to a discrete
time dynamical system

As N ⊂ R, it can be embedded into a continuous space
dynamical system

(Rm, f ).

9



Preliminary: Digital World = Discrete Time and Space

. . .B B A T M i s a D y n a m i c a l S y s t e m B B. . .

q

A Turing machine is a particular discrete-time discrete-space
dynamical systems.

A Turing machine over alphabet Σ corresponds to a discrete
time dynamical system

(Q × N× Σ∗,`).

As N ⊂ R, it can be embedded into a continuous space
dynamical system

(Rm, f ).

9



Preliminary: Digital World = Discrete Time and Space

. . .B B A T M i s a D y n a m i c a l S y s t e m B B. . .

q

A Turing machine is a particular discrete-time discrete-space
dynamical systems.

A Turing machine over alphabet Σ corresponds to a discrete
time dynamical system

(N,`).

As N ⊂ R, it can be embedded into a continuous space
dynamical system

(Rm, f ).

9



Preliminary: Digital World = Discrete Time and Space

. . .B B A T M i s a D y n a m i c a l S y s t e m B B. . .

q

A Turing machine is a particular discrete-time discrete-space
dynamical systems.

A Turing machine over alphabet Σ corresponds to a discrete
time dynamical system

(N,`).

As N ⊂ R, it can be embedded into a continuous space
dynamical system

(Rm, f ).
9



Dynamic Undecidability
Dynamic Undecidability Results:

[Moore90]

[Ruohonen93]

[Siegelmann-Sontag94]

[Asarin-Maler-Pnueli95]

[Branicky95]

[Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical
systems are hard, from a computability and

complexity point of view.

PROBLEMATIC !!

10



Dynamic Undecidability
Dynamic Undecidability Results:

[Moore90]

[Ruohonen93]

[Siegelmann-Sontag94]

[Asarin-Maler-Pnueli95]

[Branicky95]

[Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical
systems are hard, from a computability and

complexity point of view.

PROBLEMATIC !!

10



Dynamic Undecidability
Dynamic Undecidability Results:

[Moore90]

[Ruohonen93]

[Siegelmann-Sontag94]

[Asarin-Maler-Pnueli95]

[Branicky95]

[Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical
systems are hard, from a computability and

complexity point of view.

PROBLEMATIC !!

10



Amazing/EVEN MORE Problematics facts about
continuous time systems

Space contraction.

Time contraction.

Zeno’s paradox phenomenon.

11



Piecewise Constant Derivative systems

PCD systems [Asarin-Maler-Pnueli94]:

dx/dt = f (x)

with f : Rd → Qd piecewise
constant:

1. Range(f ) = C ,

#C <∞
2. for all c ∈ C , f −1(c) is a

finite union of polyhedral
convex subsets of Rd .

12



PCD systems in finite discrete time

Discrete time: number of regions crossed.

Theorem:

1. The reachability problem for PCD systems of dimension 2 is
decidable [Asarin-Maler-Pnueli95].

2. PCD systems of dimension d ≥ 3 can simulate Turing
machines [Asarin-Maler-Pnueli95].

13



A trajectory of a PCD system

(1,−1)

(−1,−1) (−1,1/2)

(1,1)

(x,0)(−x/2,0) (x/2,0)

(0, x/2)

5/2(x + x/2 + x/4 + . . . ) = 5

Observation [Zeno -490/-425]: to a finite continuous time
can correspond a transfinite discrete time.

14



A trajectory of a PCD system

(1,−1)

(−1,−1) (−1,1/2)

(1,1)

(x,0)(−x/2,0) (x/2,0)

(0, x/2)

5/2(x + x/2 + x/4 + . . . ) = 5

Observation [Zeno -490/-425]: to a finite continuous time
can correspond a transfinite discrete time.

14



A trajectory of a PCD system

(1,−1)

(−1,−1) (−1,1/2)

(1,1)

(x,0)(−x/2,0) (x/2,0)

(0, x/2)

5/2(x + x/2 + x/4 + . . . ) = 5

Observation [Zeno -490/-425]: to a finite continuous time
can correspond a transfinite discrete time.

14



IDEA: Abstract 2-dimensional Representation of a
3-dimensional Turing Machine

15



IDEA: The Same But With Dimensions Divided by 2

16



IDEA: Recognizing the Halting Problem of a Turing
Machine in dimension 4

17



In continuous time? [Bournez99]

Continuous time: time taken by the trajectory.

Dimension Languages semi-recognized

2 < Σ1

3 Σ1

4 Σ2

5 Σω

6 Σω+1

7 Σω2

8 Σω2+1

. . . . . .
2p+1 Σωp−1

2p+2 Σωp−1+1

Extending [Asarin-Maler95].

18



Smooth version

[Ruohonen97]: Space and time contractions can be used to prove
that systems (Rm, f ), with f smooth (i.e. C∞), on a compact
finite-dimensional domain, can simulate arbitrary Turing machines.

[Moore98] conjecture: No analytic function on a compact,
finite-dimensional space, can simulate a Turing machine trough a
reasonable input and output encoding.

19



Sub-menu

Motivation
Overal objective
Motivation 1: Verification, Control Theory
Motivation 2: Models of Computations

20



Verification
Control Theory

Recursive Analysis
Computation Theory
Complexity Theory

...

GPAC
Neural Networks

Analog Automata
Distributed Computing

...Machines

Continuous Systems Theory

Models from Physics,
Biology, . . .

21



Verification
Control Theory

Recursive Analysis
Computation Theory
Complexity Theory

...

GPAC
Neural Networks

Analog Automata
Distributed Computing

...Machines

Continuous Systems Theory

Models from Physics,
Biology, . . .

21



Alan M. Turing

. . .B B 2 3 J u n e 1 9 1 2 - - 7 J u n e 1 9 5 4 B B. . .

q

22



The digital world
Many models of computations:

I Recursive functions, Kurt Gödel, 1931-34.
I Turing machines, Alan Turing, 1936.
I λ-calculus, Alonzo Church, 1936.
I Post systems
I . . .

But, equivalent

Equivalent?

I at the computability level, through Church Turing’s thesis
I and also roughly equivalent at the complexity level: P, NP, . . .

These are digital models: time is discrete, space is discrete.

What about analog models?

23



The digital world
Many models of computations:

I Recursive functions, Kurt Gödel, 1931-34.
I Turing machines, Alan Turing, 1936.
I λ-calculus, Alonzo Church, 1936.
I Post systems
I . . .

But, equivalent

Equivalent?

I at the computability level, through Church Turing’s thesis
I and also roughly equivalent at the complexity level: P, NP, . . .

These are digital models: time is discrete, space is discrete.

What about analog models?

23



The (digital) Picture

Church Thesis “What is effectively calculable is computable”

Thesis M “What can be calculated by a machine is computable”

Thesis? “What can be calculated by a model is computable”

(following [Copeland2002])

Understanding computational power of models helps to understand

limits of mechanical reasoning.

limits of machines.

limits of models.

24



Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

25



Sub-menu

Analog Models of Computations
Some Analog Computers
A model from 19th Century: Rivets’ mechanisms
A machine from 20th Century: Differential analyzers
A model from 21th century: Computing with Populations

26



Some Analog Computers

Antikythera Mechanism

(-87, authors? )

Slide Rule

(1620 - 1630, Napier, Gunter, Wingate)

Planimeter

(1814, Hermann)

MONIAC/Financephalograph

(1949, Phillips)

27



Sub-menu

Analog Models of Computations
Some Analog Computers
A model from 19th Century: Rivets’ mechanisms
A machine from 20th Century: Differential analyzers
A model from 21th century: Computing with Populations

28



A model from 19th Century: Rivets’ mechanisms

Rivets’ mechanisms.

I How to realize an homothety: the pantograph.

29



A model from 19th Century: Rivets’ mechanisms
I How to transform a circular into a linear motion: Peaucellier’s

mechanism (1864 - 1871).

Computational power of Rivets’s mechanisms?

I Theorem [Kempke]: computable iff semi-algebraic.

Voir aussi: “De la nécessité de tracer les droites au compas”, Pierre

Damphousse, Fête de la Science.

30



A model from 19th Century: Rivets’ mechanisms
I How to transform a circular into a linear motion: Peaucellier’s

mechanism (1864 - 1871).

Computational power of Rivets’s mechanisms?

I Theorem [Kempke]: computable iff semi-algebraic.

Voir aussi: “De la nécessité de tracer les droites au compas”, Pierre

Damphousse, Fête de la Science.

30



A model from 19th Century: Rivets’ mechanisms
I How to transform a circular into a linear motion: Peaucellier’s

mechanism (1864 - 1871).

Computational power of Rivets’s mechanisms?

I Theorem [Kempke]: computable iff semi-algebraic.

Voir aussi: “De la nécessité de tracer les droites au compas”, Pierre

Damphousse, Fête de la Science.

30



A model from 19th Century: Rivets’ mechanisms
I How to transform a circular into a linear motion: Peaucellier’s

mechanism (1864 - 1871).

Computational power of Rivets’s mechanisms?

I Theorem [Kempke]: computable iff semi-algebraic.

Voir aussi: “De la nécessité de tracer les droites au compas”, Pierre

Damphousse, Fête de la Science.
30



Formally

Theorem (Computational power of planar mechanisms)

For any non-empty semi-algebraic set S, there exists a
mechanism with n points that move on linear segments, but
that are free to move on these segments, and that forces the
relation (x1, . . . , xn) ∈ S, where xi are the distances on the
linear segments.

Conversely, the domain of evolution of any finite planar
mechanism is semi-algebraic.

(theorem attributed to Kempke).

31



Sub-menu

Analog Models of Computations
Some Analog Computers
A model from 19th Century: Rivets’ mechanisms
A machine from 20th Century: Differential analyzers
A model from 21th century: Computing with Populations

32



A machine from 20th Century: Differential analyzers

Vannevar Bush’s 1938 mechanical

Differential Analyser

Underlying principles: Lord
Kelvin 1876.

First ever built: V. Bush
1931 at MIT.

Applications: from gunfire
control up to aircraft design

Intensively used during U.S.
war effort.

Electronic versions from late
40s, used until 70s

33



A Mechanical Integrator

Bureau of Naval Personnel, Basic Machines and How They Work, 1964

34



A Modern Electronic Integrator

⊳∞        
-

R

C

V
U +

V (t) = −1/RC

∫ t

0
U(t)dt

35



Electronic Differential Analyzer

Advertisements in Scientific American, March
1953.

See also:

Doug Coward’s
Analog Computer Museum

http://dcoward.best.vwh.net/analog/

36



Electronic Differential Analyzer

Advertisements in Scientific American, March
1953.

See also:

Doug Coward’s
Analog Computer Museum

http://dcoward.best.vwh.net/analog/

36



The General Purpose Analog Computer

The GPAC
A mathematical abstraction from Claude Shannon (1941) of the
Differential Analyzers.

Basic units:

k k
u
v + u + v

u
v

∫
w

{
w′(t) = u(t)v′(t)
w(t0) = α

uv×u
v

A constant unit An adder unit

An integrator unit A multiplier unit

37



Example: Generating cos and sin via a GPAC

∫ ∫ ∫-1

t y3
y2

y1


y ′1 = y3 & y1(0) = 1
y ′2 = y1 & y2(0) = 0
y ′3 = −y ′2 & y3(0) = 0

y1 = cos(t), y2 = sin(t), y3 = − sin(t).

38



Programming with GPACs: Example. Pendulum

x(t)

Suppose you want to solve

x ′′ + p2 sin(x) = 0.

Program:
Let’s define

y = x ′

z = sin(x)
u = cos(x)

To get
x ′ = y
y ′ = −p2z
z ′ = yu
u′ = −yz

.

39



Programming with GPACs: Example. Pendulum

x(t)

Suppose you want to solve

x ′′ + p2 sin(x) = 0.

Program:
Let’s define

y = x ′

z = sin(x)
u = cos(x)

To get
x ′ = y
y ′ = −p2z
z ′ = yu
u′ = −yz

.

39



Programming with GPACs: Example. Pendulum

x(t)

Suppose you want to solve

x ′′ + p2 sin(x) = 0.

Program:
Let’s define

y = x ′

z = sin(x)
u = cos(x)

To get
x ′ = y
y ′ = −p2z
z ′ = yu
u′ = −yz

.

39



Sub-menu

Analog Models of Computations
Some Analog Computers
A model from 19th Century: Rivets’ mechanisms
A machine from 20th Century: Differential analyzers
A model from 21th century: Computing with Populations

40



From discrete to continuous models

Q = {q1, q2, q3, q4}
δ(q1, q2) = q2 [β]
δ(q2, q1) = q2 [β]
δ(q4, q2) = q3 : 1/2, q4 : 1/2 [ν]
δ(q2, q4) = q3 : 1/2, q4 : 1/2 [ν]

R = βS0/ν.
Epidemic Rate

Microscopic Dynamic

Kermack-McKendrick
SIR model. S ′ = −βSI

I ′ = βSI − νI
R′ = νI .

Macroscopic Dynamic

Question
Programming/Computing with Such models?

41



From discrete to continuous models

Q = {q1, q2, q3, q4}
δ(q1, q2) = q2 [β]
δ(q2, q1) = q2 [β]
δ(q4, q2) = q3 : 1/2, q4 : 1/2 [ν]
δ(q2, q4) = q3 : 1/2, q4 : 1/2 [ν]

R = βS0/ν.
Epidemic Rate

Microscopic Dynamic

Kermack-McKendrick
SIR model. S ′ = −βSI

I ′ = βSI − νI
R′ = νI .

Macroscopic Dynamic

Question
Programming/Computing with Such models?

41



From discrete to continuous models

Q = {q1, q2, q3, q4}
δ(q1, q2) = q2 [β]
δ(q2, q1) = q2 [β]
δ(q4, q2) = q3 : 1/2, q4 : 1/2 [ν]
δ(q2, q4) = q3 : 1/2, q4 : 1/2 [ν]

R = βS0/ν.
Epidemic Rate

Microscopic Dynamic

Kermack-McKendrick
SIR model. S ′ = −βSI

I ′ = βSI − νI
R′ = νI .

Macroscopic Dynamic

Question
Programming/Computing with Such models?

41



From discrete to continuous models

Q = {q1, q2, q3, q4}
δ(q1, q2) = q2 [β]
δ(q2, q1) = q2 [β]
δ(q4, q2) = q3 : 1/2, q4 : 1/2 [ν]
δ(q2, q4) = q3 : 1/2, q4 : 1/2 [ν]

R = βS0/ν.
Epidemic Rate

Microscopic Dynamic

Kermack-McKendrick
SIR model. S ′ = −βSI

I ′ = βSI − νI
R′ = νI .

Macroscopic Dynamic

Question
Programming/Computing with Such models?

41



A model from 21th century: Computing with Large
Populations

My favourite example:
I States: { , }
I Rules of interactions:

→
→
→
→

I What can we say about

p =
number of

number of + number of
?

This is a model
I inspired from [Angluin,Aspnes,Diamadi,Fischer,Peralta 2004]’s

Population Protocoles introduced in the context of distributed
systems / (anonymous) sensor networks.

I but with a large population hypothesis.

42



Informal approach on this example

→
→
→
→

The mean number of created,

b(p ) = −1 ∗ p2 + 1 ∗ p (1− p ) + 1 ∗ p (1− p ) + 1 ∗ (1− p )2

= 1− 2p2

must be equal, at the limit to 0,

and hence

p =

√
2

2
,

at the limit.

In other words,

this protocol computes real number
√

2
2 .

43



Main result

Theorem

ν is computable by an LPP

if and only if

ν ∈ [0, 1] is algebraic.

44



Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

45



What can be generated by a GPAC?

The purpose of Shannon’s 41 paper is a characterization of
GPAC generable functions.

Shannon’s 41 characterization is incomplete: Several
problems, even about definitions, corrected by
[PourEl-Richards74], [Lipshitz-Rubel87], [Graça-Costa03].

For the better defined class considered in [Graça-Costa03].

Proposition (Graça-Costa03)

A scalar function f : R→ R is generated by a GPAC iff it is a
component of polynomial continuous time dynamical system.

These functions will be also called pIVP functions.

46



What can be generated by a GPAC?

The purpose of Shannon’s 41 paper is a characterization of
GPAC generable functions.

Shannon’s 41 characterization is incomplete: Several
problems, even about definitions, corrected by
[PourEl-Richards74], [Lipshitz-Rubel87], [Graça-Costa03].

For the better defined class considered in [Graça-Costa03].

Proposition (Graça-Costa03)

A scalar function f : R→ R is generated by a GPAC iff it is a
component of polynomial continuous time dynamical system.

These functions will be also called pIVP functions.

46



Formally:

For the better defined class considered in [Graça-Costa03], a
scalar function f : R→ R is generated by a GPAC iff

f (t) = yi (t)

for y(t) ∈ Rm solution of{
y ′ = p(t, y),
y(0) = x

(1)

where p is (a vector of) polynomials.

These functions will be also called pIVP functions.

47



Formally:

For the better defined class considered in [Graça-Costa03], a
scalar function f : R→ R is generated by a GPAC iff

f (t) = yi (t)

for y(t) ∈ Rm solution of{
y ′ = p(t, y),
y(0) = x

(1)

where p is (a vector of) polynomials.

These functions will be also called pIVP functions.

47



Uncomputability (Ungenerability) Results

Consequence: A GPAC generated unary function f : I ⊂ R→ R
must be differentially algebraic (d.a.):

i.e. it satisfies some algebraic differential equation of the form p
(
t, y, y′, ..., y (n)

)
= 0, where p is a non-zero

polynomial in all its variables.

Non-d.a. functions:

Gamma function Γ(x) =
∫∞

0 tx−1e−tdt [Hölder 1887].

Riemann’s Zeta function ζ(x) =
∑∞

k=0
1
kx [Hilbert].

48



Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

49



Recursive Analysis

Due to Turing, Grzegorczyk, Lacombe. Here presentation from
Weihrauch.

A tape represents a real number

Each real number x is represented via
an infinite sequence (xn)n ∈ Q,

||xn − x || ≤ 2−n.

M behaves like a Turing Machine

Read-only one-way input tapes
Write-only one-way output tape.
M outputs a representation of f (x1, x2)
from representations of x1, x2.

50



Solving ODEs and computability

Pour-El Richards 79:

I There exists some computable f : [0, 1]× [−1, 1]→ R such
that ordinary differential equation

y ′ = f (t, y),

has no computable solution over any closed domain.

Graça Zhong Buescu 2007:

I If f : [0, 1]× [−1, 1]→ R is computable and ordinary
differential equation

y ′ = f (t, y),

has a unique solution, then it must be computable.

51



Moral on Analog Models of Computations

Summary:

GPAC generable ( Computable

With more details:

I [Graça Zhong Buescu 2007] Let f : (α, β) ⊂ R→ Rk be some
pIVP function with computable parameters.
Then f is computable on (α, β).

I pIVP functions must be analytic.

I Computable functions include some non-analytic functions (ex:
min(x , 0)).

I Gamma function and Riemann’s Zeta function are computable.

52



Criticisms

We stated
GPAC generable ( Computable.

However, the notion of GPAC generated function assumes
computation in “real time” - a very restrictive form of
computation.

What happen if we change this notion of computability to the
kind of “converging computation” used in recursive analysis,

53



Criticisms

We stated
GPAC generable ( Computable.

However, the notion of GPAC generated function assumes
computation in “real time” - a very restrictive form of
computation.

What happen if we change this notion of computability to the
kind of “converging computation” used in recursive analysis,

53



GPAC Computability vs GPAC Generation

Definition
A function f : [a, b]→ R is GPAC-computable iff there exist some
computable polynomials p : Rn+1 → Rn, p0 : R→ R, and n − 1
computable real values α1, ..., αn−1 such that:

1. (y1, ..., yn) is the solution of the Cauchy problem y ′ = p(y , t)
with initial condition (α1, ..., αn−1, p0(x)) set at time t0 = 0

2. limt→∞ y2(t) = 0

3. |f (x)− y1(t)| ≤ y2(t) for all x ∈ [a, b] and all t ∈ [0,+∞).

Time (t)

Input (x0)

y1(x0, t)

y2(x0, t)
GPAC

f (x0)

y1(x0, t)

t

54



Graça 04’s Result

Proposition (Graça 04)

The Gamma function Γ is GPAC-computable.

(so is the ζ function)

55



Bournez, Campagnolo, Graça, Hainry’s result

Theorem
Let a and b be computable reals. A function f : [a, b]→ R is
computable iff it is GPAC-computable.

In a provocative way:

GPAC is not weaker than modern machines, from a
computability point of view.

56



Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

57



An Other Morality & A BIG question?

TIMETM(t) ⊆ TIMEGPAC (t).

Important question:

I Formulation 1: Can GPAC compute faster than Turing
machines?

I Formulation 2: TIMEGPAC (t) ⊆ TIMETM(t)?

I Formulation 3: Can (at least polynomial) ordinary differential
equations be solved in polynomial time?

58



An Other Morality & A BIG question?

TIMETM(t) ⊆ TIMEGPAC (t).

Important question:

I Formulation 1: Can GPAC compute faster than Turing
machines?

I Formulation 2: TIMEGPAC (t) ⊆ TIMETM(t)?

I Formulation 3: Can (at least polynomial) ordinary differential
equations be solved in polynomial time?

58



Problems and solutions

Usual methods problems:

Finite order method

⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



Problems and solutions

Usual methods problems:

Finite order method
⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



Problems and solutions

Usual methods problems:

Finite order method
⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||

⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



Problems and solutions

Usual methods problems:

Finite order method
⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



Problems and solutions

Usual methods problems:

Finite order method
⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



Problems and solutions

Usual methods problems:

Finite order method
⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



Problems and solutions

Usual methods problems:

Finite order method
⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



Problems and solutions

Usual methods problems:

Finite order method
⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !

59



A solution

We want to solve: {
y ′ = p(y)

y(t0)= y0

A result (submitted):

A simple algorithm: variable order multi-step Taylor method

Tricky proof: error analysis and parameter choices

Main benefits: The proposed method is indeed polynomial !!

60



The algorithm

Algorithm 1: SolvePIVP

input : The initial condition (t0, y0) ∈ Q×Qd

input : The polynomial p of the PIVP
input : The total time step T ∈ Q
input : The precision ξ requested
input : The number of steps N
input : The order of the method ω
output: x ∈ Qd

1 begin
2 ∆← T

N
3 x ← y0

4 for n← 1 to N do

5 x ←
∑ω−1

i=0
∆i

i! NthDeriv(p, t0 + n∆, x , ω, ξ + ∆)

61



Main Result: Technical View

Theorem
Let k = deg(p), µ > 2, T ∈ Q+,Y ∈ Q such that

Y > sup
t06u6t0+T

‖y(u)‖∞

Then Previous Algorithm guarantees

‖y(t0 + T )− SolvePIVP(t0, ỹ0, p,T , ω,N, ω)‖∞ 6 e−µ

with the following parameters

∆ =
T

N
M = (2 + Y )k A = d(1 + k!ΣpM) N = dTeAe

B = k4kΣp∆M ω = 2+µ+ln(N)+NB ‖y0 − ỹ0‖∞ 6 e−NB−µ−1

62



Morality on Analog Computations

Morality: TIMEGPAC (t) ⊆ TIMETM(t) for pIVP functions
that stay bounded or polynomially bounded.

Y > sup
t06u6t0+T

‖y(u)‖∞

Next question: Is TIMETM(t) ⊆ TIMEGPAC (t) true for such
functions.

I.e. Derive a class of ODEs such that

Poly − TimeTM = Poly − TimeODE .

63



Menu

Motivation

Analog Models of Computations

Analog Computability

Comparing Analog Computability with Digital Computability

What About Complexity?

Conclusions

64



Conclusions

We saw various analog models of computations.

No possible unification of all analog models:

I Computability: Several models are provably different.

I Complexity:

• Even defining the time of a computation is problematic for
some of them.

65



For the GPAC model

Important notice: the GPAC is the only “general purpose”
“physically motivated” model that we presented.

Analog Computability / Complexity:

I GPAC generable ( Computable.

I Computability: GPAC computable = Computable.

I Close to a notion of complexity for GPAC.

Promissing perspective:

I Towards a complexity theory for analog models of
computations.

66



The (digital) Picture

Church Thesis “What is effectively calculable is computable”

Thesis M “What can be calculated by a machine is computable”

Thesis? “What can be calculated by a model is computable”

(following [Copeland2002])

Understanding computational power of models helps to understand

limits of mechanical reasoning.

limits of machines.

limits of models.

67


	Motivation
	Overal objective
	Motivation 1: Verification, Control Theory
	Motivation 2: Models of Computations

	Analog Models of Computations
	Some Analog Computers
	A model from 19th Century: Rivets' mechanisms
	A machine from 20th Century: Differential analyzers
	A model from 21th century: Computing with Populations

	Analog Computability
	Comparing Analog Computability with Digital Computability
	What About Complexity?
	Conclusions

