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Overall objective

Main objective

Understand computation theories for CONTINUOUS systems.

Dynamical Systems
over a continuous space

H = (Rn, f )

Discrete-Time{
y(t + 1) = f (y(t))
y(0) = x

Continuous-Time{
y ′ = f (y(t))
y(0) = x
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Verification
Control Theory

Recursive Analysis
Computation Theory
Complexity Theory

...

GPAC
Neural Networks

Analog Automata
Distributed Computing

...Machines

Continuous Systems Theory

Models from Physics,
Biology, . . .
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Main Focus

Verification and Control Theory

Reachability. Given H, x0, X ⊂ Rn, decide if there is a
trajectory going from x0 to X .

Stability. Given H, decide if all trajectories go to the origin.
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Alan M. Turing
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Preliminary: Digital World = Discrete Time and Space

. . .B B A T M i s a D y n a m i c a l S y s t e m B B. . .

q

A Turing machine is a particular discrete-time discrete-space
dynamical systems.

A Turing machine over alphabet Σ corresponds to a discrete
time dynamical system

As N ⊂ R, it can be embedded into a continuous space
dynamical system

(Rm, f ).
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Dynamic Undecidability
Dynamic Undecidability Results:

[Moore90]

[Ruohonen93]

[Siegelmann-Sontag94]

[Asarin-Maler-Pnueli95]

[Branicky95]

[Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical
systems are hard, from a computability and

complexity point of view.

PROBLEMATIC !!

10



Dynamic Undecidability
Dynamic Undecidability Results:

[Moore90]

[Ruohonen93]

[Siegelmann-Sontag94]

[Asarin-Maler-Pnueli95]

[Branicky95]

[Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical
systems are hard, from a computability and

complexity point of view.

PROBLEMATIC !!

10



Dynamic Undecidability
Dynamic Undecidability Results:

[Moore90]

[Ruohonen93]

[Siegelmann-Sontag94]

[Asarin-Maler-Pnueli95]

[Branicky95]

[Graça-Campagnolo-Buescu2005]

All non-trivial questions about dynamical
systems are hard, from a computability and

complexity point of view.

PROBLEMATIC !!

10



Amazing/EVEN MORE Problematics facts about
continuous time systems

Space contraction.

Time contraction.

Zeno’s paradox phenomenon.
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Piecewise Constant Derivative systems

PCD systems [Asarin-Maler-Pnueli94]:

dx/dt = f (x)

with f : Rd → Qd piecewise
constant:

1. Range(f ) = C ,

#C <∞
2. for all c ∈ C , f −1(c) is a

finite union of polyhedral
convex subsets of Rd .
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PCD systems in finite discrete time

Discrete time: number of regions crossed.

Theorem:

1. The reachability problem for PCD systems of dimension 2 is
decidable [Asarin-Maler-Pnueli95].

2. PCD systems of dimension d ≥ 3 can simulate Turing
machines [Asarin-Maler-Pnueli95].
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A trajectory of a PCD system

(1,−1)

(−1,−1) (−1,1/2)

(1,1)

(x,0)(−x/2,0) (x/2,0)

(0, x/2)

5/2(x + x/2 + x/4 + . . . ) = 5

Observation [Zeno -490/-425]: to a finite continuous time
can correspond a transfinite discrete time.
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IDEA: Abstract 2-dimensional Representation of a
3-dimensional Turing Machine
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IDEA: The Same But With Dimensions Divided by 2
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IDEA: Recognizing the Halting Problem of a Turing
Machine in dimension 4
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In continuous time? [Bournez99]

Continuous time: time taken by the trajectory.

Dimension Languages semi-recognized

2 < Σ1

3 Σ1

4 Σ2

5 Σω

6 Σω+1

7 Σω2

8 Σω2+1

. . . . . .
2p+1 Σωp−1

2p+2 Σωp−1+1

Extending [Asarin-Maler95].
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Smooth version

[Ruohonen97]: Space and time contractions can be used to prove
that systems (Rm, f ), with f smooth (i.e. C∞), on a compact
finite-dimensional domain, can simulate arbitrary Turing machines.

[Moore98] conjecture: No analytic function on a compact,
finite-dimensional space, can simulate a Turing machine trough a
reasonable input and output encoding.
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The digital world
Many models of computations:

I Recursive functions, Kurt Gödel, 1931-34.
I Turing machines, Alan Turing, 1936.
I λ-calculus, Alonzo Church, 1936.
I Post systems
I . . .

But, equivalent

Equivalent?

I at the computability level, through Church Turing’s thesis
I and also roughly equivalent at the complexity level: P, NP, . . .

These are digital models: time is discrete, space is discrete.

What about analog models?
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The (digital) Picture

Church Thesis “What is effectively calculable is computable”

Thesis M “What can be calculated by a machine is computable”

Thesis? “What can be calculated by a model is computable”

(following [Copeland2002])

Understanding computational power of models helps to understand

limits of mechanical reasoning.

limits of machines.

limits of models.
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Some Analog Computers

Antikythera Mechanism

(-87, authors? )

Slide Rule

(1620 - 1630, Napier, Gunter, Wingate)

Planimeter

(1814, Hermann)

MONIAC/Financephalograph

(1949, Phillips)
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A model from 19th Century: Rivets’ mechanisms

Rivets’ mechanisms.

I How to realize an homothety: the pantograph.
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A model from 19th Century: Rivets’ mechanisms
I How to transform a circular into a linear motion: Peaucellier’s

mechanism (1864 - 1871).

Computational power of Rivets’s mechanisms?

I Theorem [Kempke]: computable iff semi-algebraic.

Voir aussi: “De la nécessité de tracer les droites au compas”, Pierre

Damphousse, Fête de la Science.
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Formally

Theorem (Computational power of planar mechanisms)

For any non-empty semi-algebraic set S, there exists a
mechanism with n points that move on linear segments, but
that are free to move on these segments, and that forces the
relation (x1, . . . , xn) ∈ S, where xi are the distances on the
linear segments.

Conversely, the domain of evolution of any finite planar
mechanism is semi-algebraic.

(theorem attributed to Kempke).
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A machine from 20th Century: Differential analyzers

Vannevar Bush’s 1938 mechanical

Differential Analyser

Underlying principles: Lord
Kelvin 1876.

First ever built: V. Bush
1931 at MIT.

Applications: from gunfire
control up to aircraft design

Intensively used during U.S.
war effort.

Electronic versions from late
40s, used until 70s
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A Mechanical Integrator

Bureau of Naval Personnel, Basic Machines and How They Work, 1964
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A Modern Electronic Integrator

⊳∞        
-

R

C

V
U +

V (t) = −1/RC

∫ t

0
U(t)dt
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Electronic Differential Analyzer

Advertisements in Scientific American, March
1953.

See also:

Doug Coward’s
Analog Computer Museum

http://dcoward.best.vwh.net/analog/
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The General Purpose Analog Computer

The GPAC
A mathematical abstraction from Claude Shannon (1941) of the
Differential Analyzers.

Basic units:

k k
u
v + u + v

u
v

∫
w

{
w′(t) = u(t)v′(t)
w(t0) = α

uv×u
v

A constant unit An adder unit

An integrator unit A multiplier unit
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Example: Generating cos and sin via a GPAC

∫ ∫ ∫-1

t y3
y2

y1


y ′1 = y3 & y1(0) = 1
y ′2 = y1 & y2(0) = 0
y ′3 = −y ′2 & y3(0) = 0

y1 = cos(t), y2 = sin(t), y3 = − sin(t).
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Programming with GPACs: Example. Pendulum

x(t)

Suppose you want to solve

x ′′ + p2 sin(x) = 0.

Program:
Let’s define

y = x ′

z = sin(x)
u = cos(x)

To get
x ′ = y
y ′ = −p2z
z ′ = yu
u′ = −yz

.
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From discrete to continuous models

Q = {q1, q2, q3, q4}
δ(q1, q2) = q2 [β]
δ(q2, q1) = q2 [β]
δ(q4, q2) = q3 : 1/2, q4 : 1/2 [ν]
δ(q2, q4) = q3 : 1/2, q4 : 1/2 [ν]

R = βS0/ν.
Epidemic Rate

Microscopic Dynamic

Kermack-McKendrick
SIR model. S ′ = −βSI

I ′ = βSI − νI
R′ = νI .

Macroscopic Dynamic

Question
Programming/Computing with Such models?
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A model from 21th century: Computing with Large
Populations

My favourite example:
I States: { , }
I Rules of interactions:

→
→
→
→

I What can we say about

p =
number of

number of + number of
?

This is a model
I inspired from [Angluin,Aspnes,Diamadi,Fischer,Peralta 2004]’s

Population Protocoles introduced in the context of distributed
systems / (anonymous) sensor networks.

I but with a large population hypothesis.
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Informal approach on this example

→
→
→
→

The mean number of created,

b(p ) = −1 ∗ p2 + 1 ∗ p (1− p ) + 1 ∗ p (1− p ) + 1 ∗ (1− p )2

= 1− 2p2

must be equal, at the limit to 0,

and hence

p =

√
2

2
,

at the limit.

In other words,

this protocol computes real number
√

2
2 .
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Main result

Theorem

ν is computable by an LPP

if and only if

ν ∈ [0, 1] is algebraic.
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What can be generated by a GPAC?

The purpose of Shannon’s 41 paper is a characterization of
GPAC generable functions.

Shannon’s 41 characterization is incomplete: Several
problems, even about definitions, corrected by
[PourEl-Richards74], [Lipshitz-Rubel87], [Graça-Costa03].

For the better defined class considered in [Graça-Costa03].

Proposition (Graça-Costa03)

A scalar function f : R→ R is generated by a GPAC iff it is a
component of polynomial continuous time dynamical system.

These functions will be also called pIVP functions.

46



What can be generated by a GPAC?

The purpose of Shannon’s 41 paper is a characterization of
GPAC generable functions.

Shannon’s 41 characterization is incomplete: Several
problems, even about definitions, corrected by
[PourEl-Richards74], [Lipshitz-Rubel87], [Graça-Costa03].

For the better defined class considered in [Graça-Costa03].

Proposition (Graça-Costa03)

A scalar function f : R→ R is generated by a GPAC iff it is a
component of polynomial continuous time dynamical system.

These functions will be also called pIVP functions.

46



Formally:

For the better defined class considered in [Graça-Costa03], a
scalar function f : R→ R is generated by a GPAC iff

f (t) = yi (t)

for y(t) ∈ Rm solution of{
y ′ = p(t, y),
y(0) = x

(1)

where p is (a vector of) polynomials.

These functions will be also called pIVP functions.
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Uncomputability (Ungenerability) Results

Consequence: A GPAC generated unary function f : I ⊂ R→ R
must be differentially algebraic (d.a.):

i.e. it satisfies some algebraic differential equation of the form p
(
t, y, y′, ..., y (n)

)
= 0, where p is a non-zero

polynomial in all its variables.

Non-d.a. functions:

Gamma function Γ(x) =
∫∞

0 tx−1e−tdt [Hölder 1887].

Riemann’s Zeta function ζ(x) =
∑∞

k=0
1
kx [Hilbert].
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Recursive Analysis

Due to Turing, Grzegorczyk, Lacombe. Here presentation from
Weihrauch.

A tape represents a real number

Each real number x is represented via
an infinite sequence (xn)n ∈ Q,

||xn − x || ≤ 2−n.

M behaves like a Turing Machine

Read-only one-way input tapes
Write-only one-way output tape.
M outputs a representation of f (x1, x2)
from representations of x1, x2.
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Solving ODEs and computability

Pour-El Richards 79:

I There exists some computable f : [0, 1]× [−1, 1]→ R such
that ordinary differential equation

y ′ = f (t, y),

has no computable solution over any closed domain.

Graça Zhong Buescu 2007:

I If f : [0, 1]× [−1, 1]→ R is computable and ordinary
differential equation

y ′ = f (t, y),

has a unique solution, then it must be computable.
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Moral on Analog Models of Computations

Summary:

GPAC generable ( Computable

With more details:

I [Graça Zhong Buescu 2007] Let f : (α, β) ⊂ R→ Rk be some
pIVP function with computable parameters.
Then f is computable on (α, β).

I pIVP functions must be analytic.

I Computable functions include some non-analytic functions (ex:
min(x , 0)).

I Gamma function and Riemann’s Zeta function are computable.
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Criticisms

We stated
GPAC generable ( Computable.

However, the notion of GPAC generated function assumes
computation in “real time” - a very restrictive form of
computation.

What happen if we change this notion of computability to the
kind of “converging computation” used in recursive analysis,
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GPAC Computability vs GPAC Generation

Definition
A function f : [a, b]→ R is GPAC-computable iff there exist some
computable polynomials p : Rn+1 → Rn, p0 : R→ R, and n − 1
computable real values α1, ..., αn−1 such that:

1. (y1, ..., yn) is the solution of the Cauchy problem y ′ = p(y , t)
with initial condition (α1, ..., αn−1, p0(x)) set at time t0 = 0

2. limt→∞ y2(t) = 0

3. |f (x)− y1(t)| ≤ y2(t) for all x ∈ [a, b] and all t ∈ [0,+∞).

Time (t)

Input (x0)

y1(x0, t)

y2(x0, t)
GPAC

f (x0)

y1(x0, t)

t
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Graça 04’s Result

Proposition (Graça 04)

The Gamma function Γ is GPAC-computable.

(so is the ζ function)
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Bournez, Campagnolo, Graça, Hainry’s result

Theorem
Let a and b be computable reals. A function f : [a, b]→ R is
computable iff it is GPAC-computable.

In a provocative way:

GPAC is not weaker than modern machines, from a
computability point of view.
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An Other Morality & A BIG question?

TIMETM(t) ⊆ TIMEGPAC (t).

Important question:

I Formulation 1: Can GPAC compute faster than Turing
machines?

I Formulation 2: TIMEGPAC (t) ⊆ TIMETM(t)?

I Formulation 3: Can (at least polynomial) ordinary differential
equations be solved in polynomial time?
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Problems and solutions

Usual methods problems:

Finite order method

⇒ Not polynomial

Assume compact domain or Lipschitz constant:
||p(a)− p(b)|| 6 L||a− b||
⇒ Useless algorithms for our theoretical analysis

Solutions

Unbounded order method

No assumptions on the domain

Do not assume Lipschitz functions

⇒ New problems !
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A solution

We want to solve: {
y ′ = p(y)

y(t0)= y0

A result (submitted):

A simple algorithm: variable order multi-step Taylor method

Tricky proof: error analysis and parameter choices

Main benefits: The proposed method is indeed polynomial !!
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The algorithm

Algorithm 1: SolvePIVP

input : The initial condition (t0, y0) ∈ Q×Qd

input : The polynomial p of the PIVP
input : The total time step T ∈ Q
input : The precision ξ requested
input : The number of steps N
input : The order of the method ω
output: x ∈ Qd

1 begin
2 ∆← T

N
3 x ← y0

4 for n← 1 to N do

5 x ←
∑ω−1

i=0
∆i

i! NthDeriv(p, t0 + n∆, x , ω, ξ + ∆)
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Main Result: Technical View

Theorem
Let k = deg(p), µ > 2, T ∈ Q+,Y ∈ Q such that

Y > sup
t06u6t0+T

‖y(u)‖∞

Then Previous Algorithm guarantees

‖y(t0 + T )− SolvePIVP(t0, ỹ0, p,T , ω,N, ω)‖∞ 6 e−µ

with the following parameters

∆ =
T

N
M = (2 + Y )k A = d(1 + k!ΣpM) N = dTeAe

B = k4kΣp∆M ω = 2+µ+ln(N)+NB ‖y0 − ỹ0‖∞ 6 e−NB−µ−1
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Morality on Analog Computations

Morality: TIMEGPAC (t) ⊆ TIMETM(t) for pIVP functions
that stay bounded or polynomially bounded.

Y > sup
t06u6t0+T

‖y(u)‖∞

Next question: Is TIMETM(t) ⊆ TIMEGPAC (t) true for such
functions.

I.e. Derive a class of ODEs such that

Poly − TimeTM = Poly − TimeODE .
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Conclusions

We saw various analog models of computations.

No possible unification of all analog models:

I Computability: Several models are provably different.

I Complexity:

• Even defining the time of a computation is problematic for
some of them.
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For the GPAC model

Important notice: the GPAC is the only “general purpose”
“physically motivated” model that we presented.

Analog Computability / Complexity:

I GPAC generable ( Computable.

I Computability: GPAC computable = Computable.

I Close to a notion of complexity for GPAC.

Promissing perspective:

I Towards a complexity theory for analog models of
computations.
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The (digital) Picture

Church Thesis “What is effectively calculable is computable”

Thesis M “What can be calculated by a machine is computable”

Thesis? “What can be calculated by a model is computable”

(following [Copeland2002])

Understanding computational power of models helps to understand

limits of mechanical reasoning.

limits of machines.

limits of models.
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