Quantum Turing Test

Elham Kashefi

Quantum Computing as the technology for simulating quantum systems

Spectacular Progress

from complexity theory to cryptography from simulation to sampling from tomography to implementation from foundation to interpretation

proving what we are actually performing and observing is indeed quantum

Quantum Algorithms - Speed Up

Superpositions

Non-local Correlations

Interference

Quantum Algorithms - History

1985 - Deutsch-Jozsa demonstrated the first speed up

Given a boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ determine if it is constant or balanced

$$|f\rangle = \frac{1}{\sqrt{2^n}} \sum_{x \in \{0,1\}^n} (-1)^{f(x)} |x\rangle$$

The state for any constant function is orthogonal to the state for any balanced function

Quantum Algorithms - History

1985 - Deutsch-Jozsa demonstrated the first speed up

Given a boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ determine if it is constant or balanced

1994 - Simon's Problem

Given a function $f: \{0,1\}^n \to \{0,1\}^n$ finds *a* such that f(x+a) = f(x).

Breakthrough

1994 - Shor's Period Finding Problem

Given an n-bit integer, find the prime factorisation. Breaks the RSA cryptosystem

Quantum Algorithms - History

The Zoo - Stephen Jordan - 175 papers

http://math.nist.gov/quantum/zoo

Buchman-Williams cryptosystem

Elliptic curve cryptography

Algebraic and Number Theoretic Algorithms

Exponential Speed Up: Factoring, Discrete-log, Pell's Equation, Principal Ideal, Unit Group, Class Group, Gauss Sums, Matrix Elements of Group Representations

Oracular Algorithms

Broad Application: Unstructured Search, Amplitude Amplification, Collision Finding, Hidden subgroup Problem, Formula Evaluation, Linear Systems, Group Isomorphism, Network Flows

Approximation and Simulation Algorithms

Inspired by Physic : Quantum Walk, Quantum Simulation, Knot Invariants, Partition Functions, Adiabatic Optimization, Simulated Annealing

Quantum Algorithms - Perspective

Quantum Simulators

One controllable quantum system to investigate another, less accessible one

tackling problems that are too demanding for classical computers

Ultracold quantum gases, Trapped ions, Photonic, Superconducting circuits

Refuting the Strong Church-Turing Thesis

Our communication today is secure only if we cannot build a large scale quantum computer

Quantum Cryptography - Security

Quantum cryptography relies on the laws of quantum mechanics to offer unconditional security

Measurement perturbs the system

Uncertainty Principles

No Cloning

No perturbation \Rightarrow No measurement \Rightarrow No eavesdropping

Quantum Cryptography - History

Wiesner 1983

The first link between secrecy and quantum physics quantum money

Bennett and Brassard 1984, Ekert 1991

Public key distribution problem

Cleve, Gottesman and Lo, 1999; Crepeau, Gottesman and Smith, 2005 Quantum Secret Sharing

Quantum Cryptography - History

Lo, Chau, Mayers 1997 Impossibility of quantum bit commitment

Damgaard et al., 2005, 2007; Wehner, Schaffner and Terhal, 2008 New paradigms of bounded-storage models

> Gottesman and Chuang 2001 Quantum digital signature

Kitaev 2003, Chailloux and Kerenidis 2009

Perfect quantum coin flipping is impossible, but better than classical protocols exist

Broadbent, Fitzsimons and Kashefi 2009 Unconditionally secure quantum delegated computation

Quantum Cryptography - Perspective

Quantum Key Distribution Networks

SECOQC: 2008, 200 km of standard fibre optic cable to interconnect six locations across Vienna and St Poelten

Quantum Cryptography - Perspective

Quantum Key Distribution Networks

DARPA: 10-node, has been running since 2004 in Massachusetts BBN Technologies, Harvard University, Boston University and QinetiQ

Tokyo QKD Network: 7 partners NEC, Mitsubishi Electric, NTT and NICT, Toshiba Research Europe Ltd. (UK), Id Quantique (Switzerland) and All Vienna

China and Austria Earth - Satellite QKD

Secure Cloud Computing

How to make cloud computing safe?

A model for enabling convenient, on-demand network access to a shared pool of configurable computing resources

Secure Cloud Computing

Rivest, Adleman and Dertouzos 1979 Can we process encrypted data without decrypting it first ?

Fully homomorphic encryption

Classical: Gentry 2009 Only computational security

assumption of limited computational power of the adversary

Quantum: Broadbent, Fitzsimons, and Kashefi 2009 Unconditional security

Qcomputing + Qcryptography = Blind Q Computing

Classical Computer

random single qubit generator

Unconditional Perfect Privacy

&

.....

linjia.

Server learns nothing about client's computation

Measurement-based Quantum Computing

Program is encoded in the classical control computer Computation Power is encoded in the entanglement

Hide

- Angles of measurements
- Results of Measurements

Universal Blind Quantum Computings

Blindness

Protocol P on input $X = (\tilde{U}, \{\phi_{x,y}\})$ leaks at most L(X)

The distribution of the classical information obtained by Bob is independent of X

 \blacksquare The quantum state is fixed and independent of X

Experimental Implementation Barz, Kashefi, Broadbent, Fitzsimons, Zeilinger, Walther, Science 2012 4 (1)a 3 $|\theta_4\rangle$ $|\theta_3\rangle$ $|\theta_2\rangle$ b 2 3 θ_2 θ_3 Alice Bob

 $|\theta|$

Experimental Implementation

Client:

Quantum server: full power of Quantum Computation

Entangles qubits

Experimental Implementation

Client:

limited computational power

Quantum server: full power of Quantum Computation

Entangles qubits

$$\delta_j = \theta_j + \phi_j + \pi r_j$$

Computes measurement angles

Decryption: Output of the computation

Measurement in X-Y plane $|\delta_j\rangle = 1/\sqrt{2}(|0\rangle + e^{i\delta_j} |1\rangle)$

Quantum Cloud

BBC

Quantum computing could head to 'the cloud', study says

ComputeScotland

Girls lock-up quantum security

Almost as intriguingly, the research has been carried out by a team three of them being women.

The Blind Quantum Security Eschaton

Quantum computers "can decrypt any non-quantum method near-instantly, in theory, rendering all existing forms of encryption obsolete," Enderle pointed out. "This will make the concerns surrounding Iran's nuclear efforts seem trivial by comparison if a [foreign] country gets there first."

Blind Q Computing World

Other approaches

D. Aharonov, M. Ben-Or, and E. Eban, ICS 10 (2010) A. Childs, Quant. Inf. Compt. (2005) P. Arrighi and L. Salvail, Int. J. Quant. Inf. (2006)

Robust Protocol

Morimae, Dunjko, Kashefi, arXiv:1009.3486 Morimae, Fujii, Nature Communications, 2012 Morimae, PRL, 2012

Composable Protocol

Dunjko, Fitzsimons, Portmann, Renner, arXiv:1301.3662 (2013)

Approximate Protocol

Dunjko, Kashefi, Leverrier, PRL, 2012

Minimal Protocol Dunjko, Kashefi, Markham

Other Models

Datta, Kapourtionis, Kashefi, One-clean qubit

The Ultimate Challenge

Quantum Verification

Should we pay \$10000000 for a quantum computer

Simple test: We ask the box to factor a big number

Exponential World

What makes quantum not classical makes its verification not classical either

Quantum Turing Test

Proof System

Yes X satisfies some property

Can we Classically test Quantum Mechanics ?

• Correctness: in the absence of any interference, client accepts and the output is correct

• Soundness: Client rejects an incorrect output, except with probability at most exponentially small in the security parameter

Verification vs Authentication

Barnum, Crepeau, Gottesman, Smith and Tapp, FOCS02

Verification vs Authentication

Adding Traps

ε-Verification

$$P_{incorrect}^{\nu} = \left(\mathbb{I} - |\Psi_{ideal}^{\nu}\rangle \left\langle \Psi_{ideal}^{\nu}|\right) \otimes |r_{t}^{\nu}\rangle \left\langle r_{t}^{\nu}\right|$$
Accept Key

 $\sum_{\nu} p(\nu) Tr(P_{incorrect}^{\nu} B(\nu)) \le \epsilon$

Verification with single trap

Theorem. Protocol is (1 - 1/2N)-verifiable in general, and in the case of purely classical output it is (1 - 1/N)-verifiable, where *N* is the total number of qubits in the protocol.

To increase the probability of any local error being detected

O(N) many traps in random locations

To increase the minimum weight of any operator which leads to an incorrect outcome Fault-Tolerance

Challenge: Traps break the graph

Off to Vienna

What can we do with 4-qubits

Restricting to Classical Input and Output

A Complete new proof of verification was required

Pauli (σ_i)	Trap Stabilizer Measurement			Overall	
	$X\otimes \mathbb{I}\otimes Y\otimes Y$	$Y \otimes X \otimes X \otimes Y$	$Y \otimes Y \otimes \mathbb{I} \otimes X$		
$C\otimes C\otimes C\otimes C$	✓	\checkmark	✓	 ✓ 	
$C \otimes C \otimes C \otimes A$	×	×	×	X	
$C \otimes C \otimes A \otimes C$	×	×	1	X	
$C\otimes C\otimes A\otimes A$	✓	\checkmark	×	X	
$C\otimes A\otimes C\otimes C$	✓	×	×	X	
$C\otimes A\otimes C\otimes A$	×	1	1	X	
$C\otimes A\otimes A\otimes C$	×	\checkmark	×	X	
$C\otimes A\otimes A\otimes A$	✓	×	\checkmark	X	
$A \otimes C \otimes C \otimes C$	×	×	×	X	
$A\otimes C\otimes C\otimes A$	\checkmark	\checkmark	\checkmark	✓	
$A \otimes C \otimes A \otimes C$	\checkmark	\checkmark	×	X	
$A\otimes C\otimes A\otimes A$	×	×	\checkmark	X	
$A \otimes A \otimes C \otimes C$	×	\checkmark	\checkmark	X	
$A\otimes A\otimes C\otimes A$	✓ <i>✓</i>	×	×	X	
$A \otimes A \otimes A \otimes C$	✓ <i>✓</i>	×	\checkmark	X	
$A\otimes A\otimes A\otimes A$	×	\checkmark	×	X	

Summery

Only 4 qubit computation can be verified and a particular type of attack cannot be detected !

What about D-Wave Problem

Verification of 2-qubit entanglement

Blind Verification of Entanglement

Blind Verification of Entanglement

Barz, Fitzsimons, Kashefi, Walther, Nature Physics 2013

Blind state generation

Blind Bell test

We can test efficiently a quantum computer

But we need quantum randomness

Perspective

What is the lower bound

Model independent Verification

Is Nature Classically verifiable

Quantum Turing Test

