
Personalization

Want to scale? Think P2P

Anne-Marie Kermarrec

Nice, 3 April 2014

Nice, 3 April 2014

A cry for personalization

Why is personalization so difficult?

•  Huge volume of data: small portion of interest

•  Dynamic interests

•  Interesting stuff does not come always from friends

•  Classical notification systems do not filter enough or too much

 Scalable personalization infrastructures

KNN computation over large data

Basic building block for many applications

•  Similarity search

•  Machine learning

•  Data mining

•  Image processing

•  Collaborative filtering

Nice, 3 April 2014

KNN-based user-centric collaborative
filtering

Provide each user with her k closest neighbors

(Users owns a profile, the system has its favorite similarity metric)

Use this topology for

•  personalized notifications

•  recommendation

Alice
Bob

Carl

Dave

Ellie

Nice, 3 April 2014

Dealing with truly big data

Nice, 3 April 2014

Want to scale? Think P2P

 Do not look exhaustively

Nice, 3 April 2014

The key to scalability in KNN graph
construction

Consider a partial set of candidates

Sampling-based approach

Nice, 3 April 2014

P2P KNN graph construction

Which nodes are close?

How to discover them?

Similarity metric

Sampling

Which nodes are close?

Model

U(sers) × I(tems) (items)

Profile(u) = vector of liked/shared/viewed items

Cosine similarity metric Jaccard metric

 Minimal information: no tag, no user’s input, generic

!"#"$%&"'(! !,! = ! !.!
! ! ! !"##"$%(!,!) != ! ∩ !

! ∪ ! !

Each node maintains a set of
neighbors (c entries)

Peer exchange

Shuffle

P Q

How to discover them: Gossip-based
computing

Result ➙ random graph

Highly resilient against churn, partition

Small diameter

[JGKVV, ACM TOCS 2007]

KNN construction

Similarity
computation

exchange of
neighbors lists

neighborhood
optimization 1 2

Alice Bob

Carl

Dave Ellie

Frank

Decentralized KNN selection

[FGKL Middleware 2010]

RPS layer providing
random sampling

clustering layer
gossip-based
topology clustering

Interest-based link Random link

Alice
Bob

Carl

Dave

Ellie

Alice
Bob

Carl

Dave

Ellie

Nice, 3 April 2014

Convergence

Cycles

c current
neighbors versus
the c closest

Biased
sampling

Random
sampling

Applications

-  Decentralized news recommendation [BFGJK, IPDPS

2013]

-  Top-K [BGKL, ACM TODS 2011] [BGK, ACM TOIT 2014]

-  Geo recommendation [BKKT, ICDCS 2012]

Nice, 3 April 2014

DECENTRALIZED NEWS
RECOMMENDER

Notification is taking over

Nice, 3 April 2014

What’s wrong with news feed

Interest are dynamic

Wrong granularity for filtering of classical notification
systems

Small portion of the available information is of interest

Interesting stuff does not come always from friends

Nice, 3 April 2014

WhatsUp in a nutshell

KNN selection

Dissemination

Nice, 3 April 2014

Dissemination: orientation and amplification

Orientation: to whom?

 Exploit:
Forward
To friends

Explore:
Forward to
random
users

Amplification: to how many?

 Increase
Fanout
(Log(n))

Decrease
Fanout
(1)

Nice, 3 April 2014

WhatsUp in action on the survey (480 users)

Precision Recall F1-Score Messages
Gossip (f=4)

0.34 0.99 0.51 2.3 M

Cosine-CF

0.50 0.65 0.57 5,9k

Whatsup
(f=10)

0.471 0.83 0.60 2,4k

Nice, 3 April 2014

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200

S
im

ila
ri
ty

Cycle

Reference node
Changing node

Joining node

(a) Similarity in WUP view (WHATSUP)

 0

 0.2

 0.4

 0.6

 0.8

 1

 80 100 120 140 160 180 200

S
im

ila
ri
ty

Cycle

Reference node
Changing node

Joining node

(b) Similarity in WUP view (WHATSUP-Cos)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 80 100 120 140 160 180 200

N
b
 o

f
n
e
w

s
ite

m
s

lik
e
d

Cycle

Reference node
Changing node

Joining node

(c) Reception of liked news items (WHATSUP)

Figure 7: Cold start and dynamics in WHATSUP

Yet, the node starts receiving news quickly as shown in
Figure 7c with the peak in the number of interesting news
received as soon as the node joins. This is a result of both
our cold start mechanism (Section II-D) and our metric’s
ability to favor nodes with small profiles. Once the node’s
profile gets larger, the number of received news per cycle
stabilizes to values comparable to those of the reference
node. Nonetheless, the joining node reaches 80% of the
reference node’s precision after only a few cycles.

For the changing node, we select a pair of random
nodes from the survey dataset and, at 100 cycles into the
simulation, we switch their interests and start measuring the
time it takes them to rebuild their WUP views. Figure 7
displays results obtained by averaging 100 experiments.
Again, the WUP metric causes the views to converge faster
than cosine similarity: 40 cycles as opposed to over 100.
Moreover, the values of recall and precision for the nodes
involved in the change of interests never decrease below 80%
of the reference node’s values. These results are clearly tied
to the length of the profile window, set to about 40 cycles in
these experiments. Shorter windows would in fact lead to an
even more responsive behavior. We are currently evaluating
this aspect on the current WHATSUP prototype. Moreover,
while it may seem surprising that switching interests takes
longer than joining a network from scratch, this experiment
is an unlikely situation that provides an upper bound on the
impact of more gradual interest changes.

Finally, the implicit nature of WHATSUP and the push
nature of BEEP also make WHATSUP resilient to basic forms
of content bombing. Unless a spammer node has enough
resources to contact directly a large number of nodes, it will
be unable to flood the network with fake news. The dislike
mechanism, with its small fanout and TTL values will, in
fact, limit the dissemination of clearly identified spam to a
small subset of the network.

D. Simulation and implementation

We also evaluate the performance obtained by our im-
plementation in two settings: (i) a 170 PlanetLab node
testbed with 245 users, and (ii) an emulated network of 245

nodes (machines and users) deployed on a 25-node cluster
equipped with the ModelNet network emulator. For practical
reasons we consider a shorter trace and very fast gossip
and news-generation cycles of 30sec, with 5 news items per
cycle. These gossip frequencies are higher than those we
use in our prototype, but they were chosen to be able to run
a large number of experiments in reasonable time. We also
use a profile window of 4min, compatible with the duration
of our experiments (1 to 2 hours each).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 2 4 6 8 10 12

F
1
-S

co
re

Fanout (Flike)

Simulation
PlanetLab
ModelNet

(a) Survey: F1-Score

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18
 20

 2 4 6 8 10 12

B
a
n
d
w

id
th

 (
K

b
p
s)

Fanout (Flike)

Total
WUP

BEEP

(b) Bandwidth in planetlab

Figure 8: Implementation: bandwidth and performance

Figure 8a shows the corresponding results obtained on
the survey and compares them to those obtained through
simulation on the same 245-user dataset with increasing
fanout values. ModelNet results confirm the accuracy of
our simulations. The corresponding curves closely match
each other except from some fluctuations with small fanout

749

Orientation (survey)

News items received through a dislike forward

Number of
dislikes

0 1 2 3 4

Fraction of
liked news

54% 31% 10% 3% 2%

by showing, for each news item received by a node that likes
it, the number of times it was forwarded by nodes that did
not like it. For instance, we can see that 31% of the news
items liked by nodes were forwarded exactly once by nodes
that did not like them. This conveys the benefit of the dislike
feature and the importance of (negative) feedback from users
in giving items a chance to reach interested nodes across the
entire network.

Number of dislikes 0 1 2 3 4
Fraction of news 54% 31% 10% 3% 2%

Table IV: News received and liked via dislike

Figure 5 shows the impact of the TTL value on the per-
formances. Too low a TTL mostly impacts recall; yet values
of TTL over 4 do not improve the quality of dissemination.
Finally, Table III also includes the performance of a standard
homogeneous gossip protocol, which achieves the worst F1-
Score value of 0.51 with almost twice as many messages as
WHATSUP.

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2 4 6 8
Max TTL

Precision
Recall

F1-Score

Figure 5: Survey: Impact of the dislike feature of BEEP

Figure 6 shows hows nodes at increasing distances from
the source of a news item contribute to dissemination. We
observe from the bell-shaped curve that most dissemination
actions are carried out within a few hops of the source, with
an average around 5. This is highly beneficial because a
small number of hops leads to news items being dissemi-
nated faster.1 Finally, the plot also confirms the effectiveness
of the dislike mechanism with a non-negligible number of
infections being due to dislike operations.

C. Implicit nature of WHATSUP

Next, we evaluate WHATSUP’s reliance on implicit ac-
quaintances by comparing it with two forms of explicit

filtering: cascading over explicit social links, and the ideal
pub/sub system, C-Pub/Sub.

The first set of results in Table V shows that WHATSUP

achieves a higher F1-Score with respect to cascading. More
specifically, while both approaches provide almost the same

1A precise analysis of dissemination latency would require knowledge
of the response time of users. Such an analysis is outside the scope of this
paper and is subject of ongoing work.

 0

 10

 20

 30

 40

 50

 60

 70

 0 5 10 15 20 25 30

N
B

 N
o

d
e

s

NB Hops

Forward by like
Infection by like

Forward by dislike
Infection by dislike

Figure 6: Survey (fLIKE = 5): Impact of amplification of BEEP

level of precision, WHATSUP outperforms (by more than six
times) cascading in terms of recall. The very low recall of
cascading highlights the fact that the explicit social network
does not necessarily connect all the nodes interested in a
given topic. The low number of messages of cascading is
a result of its small recall. The network traffic per infected
user generated by WHATSUP is, in fact, 50% less than that
of cascading (2.57K messages vs 5.27K).

Dataset Approach Precision Recall F1-Score Messages

Digg
Cascade 0.57 0.09 0.16 228k

WHATSUP 0.56 0.57 0.57 705k

Survey
C-Pub/Sub 0.40 1.0 0.58 470k
WHATSUP 0.47 0.83 0.60 1.1M

Table V: WHATSUP vs C-Pub/Sub and Cascading

The second set of results in the table compares WHATSUP

with C-Pub/Sub. As discussed in Section IV-B, C-Pub/Sub
disseminates news items to all subscribers with a minimal
number of messages. Its recall is therefore 1 while its
precision is only limited by the granularity of its topics.
In spite of this, WHATSUP improves C-Pub/Sub’s accuracy
by 12% in the survey dataset with a little more than three
times as many messages while conserving a good recall.
This results in a better trade-off between accuracy and
completeness as indicated by its higher F1-Score.

Another important advantage of WUP’s implicit approach
is its ability to cope with interest dynamics. To measure
this, we evaluate the time required by a new node joining
the network and a node changing of interests to converge to
a view matching its interests both in WHATSUP (Figure 7a)
and in WHATSUP-Cos (Figure 7b).

For the joining node, we select a reference node and intro-
duce a new joining node with an identical set of interests. We
then compute the average similarity between the reference
node and the members of its WUP view and compare it to
the same measure applied to the joining node. We repeated
the experiment by randomly choosing 100 joining nodes and
averaged the results. The WUP metric significantly reduces
the number of cycles required by the joining node to rebuild
a WUP view that is as good as that of the reference node
(20 cycles for WHATSUP vs over 100 for WHATSUP-Cos).

748

WhatsUp versus Pub/Sub

Approach Precision Recall F1-Score

Pub/Sub 0.40 1.0 0.58

WhatsUp 0.47 0.83 0.60

WhatsUp versus cascading

Approach Precision Recall F1-Score
Cascading 0.57 0.09 0.16
WhatsUp 0.56 0.57 0.57

Privacy matters
-  Obfuscation
-  Anonymous routing
-  Threshold protocol
-  Differentially private

protocol
-  Landmark-based protocol

Nice, 3 April 2014

http://131.254.213.98:8080/wup/
 ST

R
O
N
G
E
R

G
A
R
A
N
TE
E
S

Operational prototype

Tested on 500 users @
TrentoRise last year

TRY IT J

Take away message

Personalization is needed

Decentralization is healthy

Gossip-based computing is one (the) way to go

For those who are afraid of P2P

Nice, 3 April 2014

Turns out to be an effective centralized
algorithm too.

A

A
2

A
3

A
1

A
4

Candidate set: neighbors of neighbors
+ Random candidates for dynamics

Nice, 3 April 2014

Comparison with [Dong&al, 2012]

Hybrid recommendation engine

Nice, 3 April 2014

Nice, 3 April 2014

Cost

Nice, 3 April 2014

Dataset Users Items Ratings

MovieLens1 943 1700 100,000

MovieLens2 6,040 4000 1,000,000

MovieLens3 69,878 10,000 10,000,000

Digg 59,167 7724 782,807

 10
 100

 1000
 10000

 100000
 1e+06
 1e+07
 1e+08

ML1 ML2 ML3 Digg

Se
co

nd
s

CRec
ClusMahout

Mahout
Exhaustive

Grid 5000 implementation

 HyRec: Taking the best of both worlds

Online KNN selection
Candidate set (k): k2 users for quick convergence, k random (biased) for dynamics
No data stored at the client

Recommendation: R most popular items

HyRec client: Javascript (widget) running in the browser
 Nice, 3 April 2014

Nice, 3 April 2014

View similarity (MovieLens)

Nice, 3 April 2014

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 50 100 150 200

A
ve

ra
g

e
 V

ie
w

 S
im

ila
ri
ty

Time (day)

HyRec k=10
HyRec k=10 IR=7

HyRec k=20
Exhaustive k=10

Recommendation quality

Nice, 3 April 2014

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1 2 3 4 5 6 7 8 9 10

R
e

co
m

m
e

n
d

a
tio

n
 Q

u
a

lit
y

NB Recommendation

HyRec
Exhaustive p=24h
Exhaustive p=1h
Exhaustive best

HyRec versus the client load

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500

kB

Profile size

json
gzip

Figure 8: HyRec: Impact of the profile size on the band-
width overhead.

5.4.2 HyRec client evaluation

We now evaluate the cost of operating HyRec on the
client. Our solution introduces a set of tasks on the client
side, namely the KNN computation, item recommenda-
tion, and sending update messages. No data structure
needs to be maintained locally. This makes it possible for
a user to use HyRec with the same profile from various
devices. For HyRec to be sustainable, the operation of
HyRec should not significantly impact the performance
of a user’s machine. Conversely, HyRec should be able
to run regardless of the device used and its load. We now
report on experiences to show that HyRec operation is
compatible with these requirements.

Impact of HyRec on a client machine. We first mea-
sure the impact of operating the HyRec widget on an ap-
plication running on the user device. To this end, we run,
on the laptop, an application executing a similarity com-
putation in an infinite loop and measure the progress of
the application as the number of iterations achieved over
a given time window.

Figure 9 shows the number of iterations achieved on
a laptop in four different settings while artificially vary-
ing the CPU usage of the client machine using a stress
tool [13]: (i) there is no other application running on the
client machine (referred as baseline in the figure); (ii)
the client executes an infinite loop on HyRec operations
(KNN selection and item recommendation, the profile
size is set to 100); (iii) the client runs an infinite loop
that requests some HTTP content (i.e. an item of 1,004
bytes from a RSS feed) to a server and displays the con-
tent on a web page in a browser (display operation); (iv)
the client runs a fully decentralized recommender [18].
This includes the P2P network management as well as
the recommendation operations (KNN selection and rec-
ommendation). Results show that HyRec has almost the
same impact on a client machine than requesting an item
from a RSS feed and displaying it in a web page. This

 130

 140

 150

 160

 170

 180

 190

 0 20 40 60 80 100

N
u
m

b
e
r

o
f
lo

o
p
 (

M
ill

io
n
)

CPU usage (%)

Baseline
HyRec operation
Display operation

Decentralized

Figure 9: Impact of HyRec widget, a decentralized rec-
ommender and a display operation on a client machine.

demonstrates that the impact of HyRec on the client ma-
chine is minimal.

Interestingly enough, the decentralized recommender
has slightly less impact on the client. However, the op-
eration and impact is stable over time since it is due to
the overlay network management. However, in HyRec,
the impact is noticeable only when a recommendation
is computed. In addition, HyRec operation, running in
the browser, is totally transparent for users compared
to a P2P solution which requires a dedicated software
and may encounter some limitations related to churn and
NAT traversal.

We also measure the impact of the HyRec widget, run-
ning in a browser, on other applications running on an-
other tab of the browser while varying the CPU usage.
Results (not displayed here for space reason) show no
impact of the HyRec computation job on another job
within the same browser. This is due to the fact that the
browser considers each tab as a different process without
links or shared resources.

These experiments demonstrate the negligible disrup-
tion of HyRec computing the KNN and recommendation
locally from a client’s browser.

Impact of CPU usage on the HyRec client. We now
evaluate to what extent the recommendation tasks of
HyRec are impacted by the CPU usage of the client ma-
chine on two different devices: a laptop with Firefox us-
ing Ethernet and a smartphone with Android using the
Wi-Fi. We measure the time spent by the widget within a
browser with a profile size set to 100. To artificially im-
pose load on client machines, we use the antutu bench-
mark [2] and stress [13] on the smartphone and the lap-
top, respectively. Figure 10 shows the average time re-
quired on client machines to execute the HyRec recom-
mendation tasks depending on the CPU usage on (i) a
laptop and (ii) a smartphone. We observe that even on a
client machine with a CPU loaded at 50%, HyRec tasks

11

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 20 40 60 80 100

m
s

CPU usage (%)

smartphone
laptop

Figure 10: Impact of the client machine load on the
HyRec client.

can be executed in less than 60ms on the smartphone and
less than 10ms on a laptop. We also observe that this
time increases only slowly on the laptop as the CPU gets
more loaded. This conveys the fact that the impact of the
HyRec widget on the client is very limited.

Experiments show that HyRec can safely runs on a
client machine, even if the client machine is overloaded.

Impact of the profile size. As opposed to the server,
the impact of the profile size on the HyRec client is min-
imal. Figure 11 shows the HyRec tasks duration (KNN
and recommendation tasks) on both a smartphone and a
laptop with k = 10 and k = 20. Results show that the
combined time for KNN selection and recommendation
only increases by less than a factor of 1.5 and 7.2 for a
laptop and a smartphone, respectively, with profile size
ranging from 10 to 500 for a system with k = 10 (Fig-
ure 11). We observe that although the HyRec operations
run faster on a laptop than on a smartphone, the impact
is limited on the client, demonstrating the scalability of
HyRec widget with respect to the profile size.

HyRec scales very well with an increasing profile size
or candidate set size both on a laptop and a smartphone.

Impact on the bandwidth consumption. The band-
width overhead on the HyRec client as well as on the
server is very limited even with large profiles, alike to
the fully decentralized recommender since the KNN se-
lection is similar. Yet, while maintaining the overlay
network in a P2P recommender requires a periodic and
continuous exchange of profiles, typically every minute,
HyRec operates only upon a client request. For instance,
on the Digg dataset (with an average of 13 ratings per
user), the bandwidth required for the P2P recommender
per user is approximately 24MB while it is down to 8kB
in HyRec (3% of the of the bandwidth consumption of
the P2P solution). This bandwidth overhead is clearly
a limitation of the P2P recommender in mobile environ-
ments.

 10

 100

 1000

 0 100 200 300 400 500

m
s

Profile size

smartphone k=10
smartphone k=20

laptop k=10
laptop k=20

Figure 11: Profile size’s impact on the HyRec widget.

6 Concluding remarks

We report in this paper on the design and evaluation of
HyRec, a user-based collaborative filtering system that
can be adopted by various web applications. The mo-
tivation of this work is to explore solutions that could
in some sense democratize personalization by making it
accessible to any content provider company without gen-
erating huge investments.

The architecture of HyRec is hybrid in the sense that
it lies between traditional centralized systems on the one
hand, and fully decentralized P2P solutions on the other.
HyRec seeks to provide the scalability of P2P approaches
without forcing content providers to give up the control
of the system. Unlike fully decentralized approaches, the
lightweight web widget of HyRec does not require clients
to install specific software, and its centralization of sys-
tem aspects, like connections and disconnections to and
from the system, enables its realistic deployment in a dy-
namic system.

By leveraging the hardware and computation power of
client machines, content providers can limit the resources
they dedicate to personalization. By orchestrating per-
sonalization within dedicated servers, we make the entire
system tractable. HyRec is generic and can operate in
many contexts. In its current version, it relies on recom-
mendation algorithms that can be run independently by
each user. Exploring recommendation algorithms oper-
ating on global information is an interesting perspective.

Also, while the impact of unstrusted and malicious
nodes are limitted in HyRec (a user computes only its
own recommendation) we do not cover privacy and pro-
tection in this paper. Clearly, sharing profiles among
users can compromise their privacy. We are currently
experimenting HyRec with two privacy mechanisms.
The first mechanism hides the user/profile association
through anonymous mapping. However, in some appli-
cations, the profile itself might be enough to identify the
associated user. The second mechanism protects profiles
using homomorphic encryption.

12

Impact of HyRec Impact of the client load

Nice, 3 April 2014

Negligible disruption of HyRec 50% load
<60ms on smartphone
<10ms on laptop

HyRec versus a centralized recommender

 1

 10

 100

 0 100 200 300 400 500

A
ve

ra
g
e
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

Profile size

CRec k=10
CRec k=20

HyRec k=10
HyRec k=20

Figure 6: Average response time for HyRec versus CRec
according to the profile size (k = 10).

ML1, and artificially control the size of the profiles. Re-
sults are similar with the other datasets. In addition,
our experiments model the worst case by considering the
largest possible candidate set for a given k (ignoring the
decreasing size of the candidate set as the neighborhood
converge). Finally, since KNN update messages from the
client to the server is negligible compared to the other
messages, we ignore them in the evaluation.

5.4.1 HyRec server evaluation

We now compare the load on the server and its ability
to scale when running HyRec or the front-end server of
CRec, when increasing the number of clients or the size
of the user profiles.

Impact of the profile size. The size of the user profile
directly impacts the performance of the servers (HyRec
and CRec). This is clearly application-dependent: for in-
stance users tend to rate news articles more often than
they rate movies. Typically, in HyRec, the larger the pro-
file, the larger the size of the messages sent over from
the HyRec server to a HyRec client. In CRec, the profile
size impacts the time spent to compute item recommen-
dation: the larger the profile, the longer the item recom-
mendation process.

In order to evaluate the impact of the profile size, we
run an experiment varying the profile size and evaluate
the response time on the HyRec server and the CRec
front-end server. We use ab [1], a benchmark tool pro-
vided by Apache. Figure 6 plots the average (over 1000
requests) response time to serve a client request in HyRec
and CRec with an increasing profile size. Results show
that HyRec consistently achieves a better response time
(50% on average) than CRec and this is clearer as the size
of profile increases. This can be explained by the fact
that the item recommendation on the CRec server takes
consistently longer than HyRec’s personalization orches-
trator takes to build messages.

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

m
s

Number of concurrent requests

HyRec ps=100
HyRec ps=10
CRec ps=100

CRec ps=10

Figure 7: HyRec vs CRec with a growing number of con-
current requests.

Impact of the number of users. Clearly the number
of users may have a large impact on the performance of
HyRec. Figure 7 compares HyRec with CRec when fac-
ing a growing number of concurrent requests from users
with profile sizes (ps) of 10 and 100. As expected, with
smaller profile size, the requests are served more rapidly
in both HyRec or CRec. Yet, HyRec consistently outper-
forms CRec regardless of the profile size. Results show
that HyRec is able to serve as many concurrent requests
with a profile size of 1000 as CRec with a profile size
of 10. This represents a clear improvement in the scal-
ablbility of the front-end server by up to 500% for very
large profiles.

Impact on the bandwidth consumption. Finally, the
profile size impacts HyRec’s bandwidth consumption.
Indeed, by delegating expensive computation tasks to
clients, HyRec generates a communication overhead with
respect to a centralized architecture. Figure 8 shows the
impact of the profile size on the size of the JSON mes-
sages generated by the HyRec server upon a client re-
quest. Results show that the size of the JSON message
grows almost linearly with the profile size. However, in
HyRec the messages are compressed through gzip on the
fly by the server resulting in a bandwidth consumption
of less than 10KB even with a profile size of 500 (around
71% of compression). Note that the bandwidth consump-
tion is also impacted by the size of the candidate set. The
candidate set size considered here is an upper bound (the
candidate set quickly converges to a smaller value). This
overhead is negligible when compared to the average size
of a current web page (1.3MBytes [5]) and to the content
of recommendations themselves, which can include pic-
tures and text.

These results demonstrate that HyRec scales better
with both the profile size and the number of concurrent
requests that a centralized approach.

10

 1

 10

 100

 0 100 200 300 400 500

A
ve

ra
g
e
 r

e
sp

o
n
se

 t
im

e
 (

m
s)

Profile size

CRec k=10
CRec k=20

HyRec k=10
HyRec k=20

Figure 6: Average response time for HyRec versus CRec
according to the profile size (k = 10).

ML1, and artificially control the size of the profiles. Re-
sults are similar with the other datasets. In addition,
our experiments model the worst case by considering the
largest possible candidate set for a given k (ignoring the
decreasing size of the candidate set as the neighborhood
converge). Finally, since KNN update messages from the
client to the server is negligible compared to the other
messages, we ignore them in the evaluation.

5.4.1 HyRec server evaluation

We now compare the load on the server and its ability
to scale when running HyRec or the front-end server of
CRec, when increasing the number of clients or the size
of the user profiles.

Impact of the profile size. The size of the user profile
directly impacts the performance of the servers (HyRec
and CRec). This is clearly application-dependent: for in-
stance users tend to rate news articles more often than
they rate movies. Typically, in HyRec, the larger the pro-
file, the larger the size of the messages sent over from
the HyRec server to a HyRec client. In CRec, the profile
size impacts the time spent to compute item recommen-
dation: the larger the profile, the longer the item recom-
mendation process.

In order to evaluate the impact of the profile size, we
run an experiment varying the profile size and evaluate
the response time on the HyRec server and the CRec
front-end server. We use ab [1], a benchmark tool pro-
vided by Apache. Figure 6 plots the average (over 1000
requests) response time to serve a client request in HyRec
and CRec with an increasing profile size. Results show
that HyRec consistently achieves a better response time
(50% on average) than CRec and this is clearer as the size
of profile increases. This can be explained by the fact
that the item recommendation on the CRec server takes
consistently longer than HyRec’s personalization orches-
trator takes to build messages.

 1

 10

 100

 1000

 10000

 100000

 0 200 400 600 800 1000

m
s

Number of concurrent requests

HyRec ps=100
HyRec ps=10
CRec ps=100
CRec ps=10

Figure 7: HyRec vs CRec with a growing number of con-
current requests.

Impact of the number of users. Clearly the number
of users may have a large impact on the performance of
HyRec. Figure 7 compares HyRec with CRec when fac-
ing a growing number of concurrent requests from users
with profile sizes (ps) of 10 and 100. As expected, with
smaller profile size, the requests are served more rapidly
in both HyRec or CRec. Yet, HyRec consistently outper-
forms CRec regardless of the profile size. Results show
that HyRec is able to serve as many concurrent requests
with a profile size of 1000 as CRec with a profile size
of 10. This represents a clear improvement in the scal-
ablbility of the front-end server by up to 500% for very
large profiles.

Impact on the bandwidth consumption. Finally, the
profile size impacts HyRec’s bandwidth consumption.
Indeed, by delegating expensive computation tasks to
clients, HyRec generates a communication overhead with
respect to a centralized architecture. Figure 8 shows the
impact of the profile size on the size of the JSON mes-
sages generated by the HyRec server upon a client re-
quest. Results show that the size of the JSON message
grows almost linearly with the profile size. However, in
HyRec the messages are compressed through gzip on the
fly by the server resulting in a bandwidth consumption
of less than 10KB even with a profile size of 500 (around
71% of compression). Note that the bandwidth consump-
tion is also impacted by the size of the candidate set. The
candidate set size considered here is an upper bound (the
candidate set quickly converges to a smaller value). This
overhead is negligible when compared to the average size
of a current web page (1.3MBytes [5]) and to the content
of recommendations themselves, which can include pic-
tures and text.

These results demonstrate that HyRec scales better
with both the profile size and the number of concurrent
requests that a centralized approach.

10

Impact of the request stress Impact of the profile size

Nice, 3 April 2014

Take away message

P2P design is crucial

Leveraging clients machine has a significant impact on scalability

Enable any content provider to implement personalization

Nice, 3 April 2014

To take away

Personalization is crucial

P2P in a design mindset

Nice, 3 April 2014

Thank you

